[1] |
Wang N, Liu Z Y, Zhang Y, Li C Y, Feng H. Identification and fine mapping of a stay-green gene( Brnye1)in pakchoi( Brassica campestris L.ssp.chinensis)[J]. Theoretical and Applied Genetics, 2018, 131(3):673-684.doi: 10.1007/s00122-017-3028-8.
pmid: 29209732
|
[2] |
Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana[J]. Nature Communications, 2017, 8(1):1421.doi: 10.1038/s41467-017-01576-3.
|
[3] |
Chen Z C, Wang L, Dai Y X, Wan X C, Liu S R. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation(or herbivory)[J]. Scientific Reports, 2017, 7(1):10125.doi: 10.1038/s41598-017-09757-2.
|
[4] |
pmid: 15951223
|
[5] |
Deng X J, Zhang H Q, Wang Y, He F, Liu J L, Xiao X, Shu Z F, Li W, Wang G H, Wang G L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid( Oryza sativa L.ssp.indica)[J]. PLoS One, 2014, 9(6):e99564.doi: 10.1371/journal.pone.0099564.
URL
|
[6] |
|
|
Wang F, Duan S M, Li T, Wang R N, Tao Y S. Fine mapping and candidate gene analysis of leaf color mutant in maize[J]. Journal of Plant Genetic Resources, 2018, 19(6):1205-1209.
|
[7] |
Guan H Y, Xu X B, He C M, Liu C X, Liu Q, Dong R, Liu T S, Wang L M. Fine mapping and candidate gene analysis of the leaf-color gene ygl- 1 in maize[J]. PLoS One, 2016, 11(4):e0153962.doi: 10.1371/journal.pone.0153962.
URL
|
[8] |
Wu H Y, Shi N R, An X Y, Liu C, Fu H F, Cao L, Feng Y, Sun D J, Zhang L L. Candidate genes for yellow leaf color in common wheat( Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling[J]. International Journal of Molecular Sciences, 2018, 19(6):1594.doi: 10.3390/ijms19061594.
URL
|
[9] |
王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体 ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4):791-800.doi: 10.3724/SP.J.1006.2022.14062.
|
|
Wang H R, Zhang Y, Yu C M, Dong Q Z, Li W W, Hu K F, Zhang M M, Xue H, Yang M P, Song J L, Wang L, Yang X Y, Qiu L J. Fine mapping of yellow-green leaf gene(ygl2)in soybean(Glycine max L.)[J]. Acta Agronomica Sinica, 2022, 48(4):791-800.
doi: 10.3724/SP.J.1006.2022.14062
URL
|
[10] |
|
|
Zheng X W, Zheng J, Wang J. Transcriptome sequencing and expression profiling of pea in leaf color mutant[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(12):1400-1407.
|
[11] |
Yang S, Zhang Z Q, Chen W C, Liang C L, Li X F, Liu Z B, Cui Q Z, Ma Y Q, Zou X X. Fine-mapping and transcriptome analysis of the photosensitive leaf-yellowing gene CaLY1 in pepper( Capsicum annuum L.)[J]. Horticultural Plant Journal, 2023, 9(1):122-132.doi: 10.1016/j.hpj.2022.06.007.
URL
|
[12] |
Wang Y S, Wang J J, Chen L Q, Meng X W, Zhen X X, Liang Y P, Han Y H, Li H Y, Zhang B. Identification and function analysis of yellow-leaf mutant( YX- yl)of broomcorn millet[J]. BMC Plant Biology, 2022, 22(1):463.doi: 10.1186/s12870-022-03843-y.
|
[13] |
王秋兰, 王智兰, 韩芳, 杜晓芬, 连世超, 韩康妮, 周雪, 李慧娟, 张林义, 王军, 郭二虎. 谷子条纹叶突变体 wsl2的鉴定及候选基因分析[J]. 华北农学报, 2020, 35(1):214-221.doi: 10.7668/hbnxb.20190654.
|
|
Wang Q L, Wang Z L, Han F, Du X F, Lian S C, Han K N, Zhou X, Li H J, Zhang L Y, Wang J, Guo E H. Identified and candidate gene analysis of a white stripe leaf mutant wsl2 in foxtail millet[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1):214-221.
|
[14] |
Terry M J, Ryberg M, Raitt C E, Page A M. Altered etioplast development in phytochrome chromophore-deficient mutants[J]. Planta, 2001, 214(2):314-325.doi: 10.1007/s004250100624.
pmid: 11800397
|
[15] |
Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant and Cell Physiology, 2003, 44(5):463-472.doi: 10.1093/pcp/pcg064.
URL
|
[16] |
Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiology, 2007, 145(1):29-40.doi: 10.1104/pp.107.100321.
pmid: 17535821
|
[17] |
pmid: 17227226
|
[18] |
Zhu X Y, Guo S, Wang Z W, Du Q, Xing Y D, Zhang T Q, Shen W Q, Sang X C, Ling Y H, He G H. Map-based cloning and functional analysis of YGL8,which controls leaf colour in rice( Oryza sativa)[J]. BMC Plant Biology, 2016, 16(1):134.doi: 10.1186/s12870-016-0821-5.
URL
|
[19] |
Gibson L C, Willows R D, Kannangara C G, von Wettstein D, Hunter C N. Magnesium-protoporphyrin chelatase of rhodobacter sphaeroides:reconstitution of activity by combining the products of the bchH,-I,and-D genes expressed in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(6):1941-1944.doi: 10.1073/pnas.92.6.1941.
pmid: 7892204
|
[20] |
Sirijovski N, Olsson U, Lundqvist J, Al-Karadaghi S, Willows R D, Hansson M. ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact[J]. The Biochemical Journal, 2006, 400(3):477-484.doi: 10.1042/BJ20061103.
URL
|
[21] |
Zhang H, Liu L L, Cai M H, Zhu S S, Zhao J Y, Zheng T H, Xu X Y, Zeng Z Q, Niu J, Jiang L, Chen S H, Wan J M. A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice[J]. Plant Molecular Biology Reporter, 2015, 33(6):1975-1987.doi: 10.1007/s11105-015-0889-3.
URL
|
[22] |
Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 2006, 62(3):325-337.doi: 10.1007/s11103-006-9024-z.
URL
|
[23] |
Li Q, Fang C, Duan Z B, Liu Y C, Qin H, Zhang J X, Sun P, Li W B, Wang G D, Tian Z X. Functional conservation and divergence of GmCHLI genes in polyploid soybean[J]. The Plant Journal, 2016, 88(4):584-596.doi: 10.1111/tpj.13282.
URL
|
[24] |
Gao M L, Hu L L, Li Y H, Weng Y Q. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase Ⅰ subunit[J]. Theoretical and Applied Genetics, 2016, 129(10):1961-1973.doi: 10.1007/s00122-016-2752-9.
URL
|
[25] |
张硕, 智慧, 张伟, 唐婵娟, 罗明昭, 汤沙, 贾冠清, 贾彦超, 刘刚, 黄志谋, 蔡海亚, 焦春海, 刁现民. 谷子条纹叶突变体 t122表型分析及基因初定位[J]. 植物遗传资源学报, 2022, 23(4):1076-1084.doi: 10.13430/j.cnki.jpgr.20220211001.
|
|
Zhang S, Zhi H, Zhang W, Tang C J, Luo M Z, Tang S, Jia G Q, Jia Y C, Liu G, Huang Z M, Cai H Y, Jiao C H, Diao X M. Phenotype analysis and low-resolution mapping of a stripe-leaf mutant t122 in foxtail millet(Setaria italica L.)[J]. Journal of Plant Genetic Resources, 2022, 23(4):1076-1084.
|
[26] |
|
|
Qin N, Zhu C C, Dai S T, Song Y H, Li J X, Wang C Y. Fine mapping and functional analysis of yellow leaf mutant ylm-1 in foxtail millet[J]. Crops, 2022(3):55-62.
|
[27] |
Li W, Tang S, Zhang S, Shan J G, Tang C J, Chen Q N, Jia G Q, Han Y H, Zhi H, Diao X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet[ Setaria italica(L.) P.Beauv[J]. Physiologia Plantarum, 2016, 157(1):24-37.doi: 10.1111/ppl.12405.
URL
|
[28] |
Zhang S, Zhi H, Li W, Shan J G, Tang C J, Jia G Q, Tang S, Diao X M. SiYGL2 is involved in the regulation of leaf senescence and photosystem Ⅱ efficiency in Setaria italica(L.) P.beauv[J]. Frontiers in Plant Science, 2018,9:1308.doi: 10.3389/fpls.2018.01308.
|
[29] |
Tang C J, Tang S, Zhang S, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL1,encoding a large subunit of ribonucleotide reductase,is crucial for plant growth,chloroplast biogenesis,and cell cycle progression in Setaria italica[J]. Journal of Experimental Botany, 2019, 70(4):1167-1182.doi: 10.1093/jxb/ery429.
URL
|
[30] |
Zhang S, Tang S, Tang C J, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL2 is required for cell cycle,leaf organ development,chloroplast biogenesis,and has effects on C 4 photosynthesis in Setaria italica(L.) P.beauv[J]. Frontiers in Plant Science, 2018,9:1103.doi: 10.3389/fpls.2018.01103.
|
[31] |
Arnon D I. Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15.doi: 10.1104/pp.24.1.1.
pmid: 16654194
|
[32] |
Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications[J]. Plant Molecular Biology Reporter, 1999, 17(1):53-57.doi: 10.1023/A:1007585532036.
URL
|
[33] |
|
|
Du X F, Wang Z L, Han K N, Lian S C, Li Y X, Zhang L Y, Wang J. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet(Setaria italica(L.) P.Beauv)[J]. Acta Agronomica Sinica, 2022, 48(4):873-885.
doi: 10.3724/SP.J.1006.2022.14043
URL
|
[34] |
Zhang G Y, Liu X, Quan Z W, et al. Genome sequence of foxtail millet( Setaria italica)provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30(6):549-554.doi: 10.1038/nbt.2195.
|
[35] |
Yuan J R, Ma T T, Ji S L, Hedtke B, Grimm B, Lin R C. Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis[J]. The New Phytologist, 2022, 235(5):1868-1883.doi: 10.1111/nph.18273.
URL
|
[36] |
Liang H K, He Q, Zhang H, Zhi H, Tang S, Wang H L, Meng Q, Jia G Q, Chang J H, Diao X M. Identification and haplotype analysis of SiCHLI:a gene for yellow-green seedling as morphological marker to accelerate foxtail millet( Setaria italica)hybrid breeding[J]. Theoretical and Applied Genetics, 2023, 136(1):24.doi: 10.1007/s00122-023-04309-x.
|
[37] |
Hansson A, Willows R D, Roberts T H, Hansson M. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA + hexamers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21):13944-13949.doi: 10.1073/pnas.212504499.
pmid: 12357035
|
[38] |
Hansson A, Kannangara C G, von Wettstein D, Hansson M. Molecular basis for semidominance of missense mutations in the XANTHA-H(42-ku)subunit of magnesium chelatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1744-1749.doi: 10.1073/pnas.96.4.1744.
pmid: 9990095
|
[39] |
Glass F, Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana[J]. Molecular Plant, 2015, 8(10):1466-1477.doi: 10.1016/j.molp.2015.05.008.
URL
|