[1] Singh R P, Singh P K, Rutkoski J, Hodson D P, He X Y, Jørgensen L N, Hovmøller M S, Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control[J]. Annual Review of Phytopathology, 2016, 54:303-322.doi:10.1146/annurev.phyto-080615-095835. [2] Liu Q, Liu Z H, Li W, Song X Y. Comparative transcriptome analysis indicates conversion of stamens into pistil-like structures in male sterile wheat(Triticum aestivum L.) with Aegilops crassa cytoplasm[J]. BMC Genomics, 2020, 21(1):124.doi:10.1186/s12864-020-6450-2. [3] Food and agriculture organization of united nation[EB/OL].2017.http://www.fao.org/faostat/zh/#data/QC. Accessed 3 July 2020. [4] Gao F M, Ma D Y, Yin G H, Rasheed A, Dong Y, Xiao Y G, Xia X C, Wu X X, He Z H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai valley since 1950[J]. Crop Science, 2017, 57(2):760-773.doi:10.2135/cropsci2016.05.0362. [5] Peng Z S, Yang J, Wei S H, Zeng J H. Characterization of the common wheat(Triticum aestivum L.) mutation line producing three pistils in a floret[J]. Hereditas, 2004, 141(1):15-18.doi:10.1111/j.1601-5223.2004.01787.x. [6] Peng Z S. A new mutation in wheat producing three pistils in a floret[J]. Journal of Agronomy and Crop Science, 2003, 189(4):270-272.doi:10.1046/j.1439-037X.2003.00040.x. [7] Yang Z J, Chen Z Y, Peng Z S, Yu Y, Liao M L, Wei S H. Development of a high-density linkage map and mapping of the three-pistils gene(Pis1) in wheat using GBS markers[J]. BMC Genomics, 2017, 18(1):567-572.doi:10.1186/s12864-017-3960-7. [8] Jayabalan S, Pulipati S, Ramasamy K, Jaganathan D, Venkatesan S D, Vijay G, Kumari K, Raju K, Hariharan G N, Venkataraman G. Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences(CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice(Oryza sativa L.) landraces[J]. Gene, 2019, 713:143976.doi:10.1016/j.gene.2019.143976. [9] Claussen M, Schmidt S. Differentiation of Basidiobolus spp. Isolates:RFLP of a diagnostic PCR amplicon matches sequence-based classification and growth temperature preferences[J]. Journal of Fungi, 2021, 7(2):110.doi:10.3390/JOF7020110. [10] Qamer S, Al-Abbadi A A, Sajid M, Asad F, Khan M F, Khan N A, Sthanadar A A, Akhtar M N, Mahmoud A H, Mohammed O B. Genetic analysis of honey bee, Apis dorsata populations using random amplified polymorphic DNA(RAPD) markers[J]. Journal of King Saud University-Science, 2021, 33(1):101218.doi:10.1016/J.JKSUS.2020.10.015. [11] Feng J J, Zhang X X, Zhang M, Guo L P, Qi T X, Tang H N, Zhu H Y, Wang H L, Qiao X Q, Xing C Z, Wu J Y. Physical mapping and InDel marker development for the restorer gene Rf2 in cytoplasmic male sterile CMS-D8 cotton[J]. BMC Genomics, 2021, 22(1):24.doi:10.1186/S12864-020-07342-Y. [12] 孙宽, 张素华, 朱如心, 赵书民, 李成涛. 新一代遗传标记-InDel研究进展[J].法医学杂志, 2013, 29(2):134-139, 143.doi:10.3969/j.issn.1004-5619.2013.02.015. Sun K, Zhang S H, Zhu R X, Zhao S M, Li C T. Progress in InDel as a new generation of genetic marker[J]. Journal of Forensic Medicine, 2013, 29(2):134-139, 143. [13] 吴澎, 刘娟, 田纪春. 单核苷酸多态性(SNP)分子标记在小麦遗传育种中的研究进展[J].农学学报, 2019, 9(1):54-58.doi:10.11923/j.issn.2095-4050.cjas17120018. Wu P, Liu J, Tian J C. Research progress of single nucleotide polymorphism(SNP) molecular markers in wheat genetic breeding[J]. Journal of Agriculture, 2019, 9(1):54-58. [14] Du Z, Zhou X, Ling Y, Zhang Z H, Su Z. agriGO:a GO analysis toolkit for the agricultural community[J]. Nucleic Acids Research, 2010, 38(S2):W64-W70.doi:10.1093/nar/gkq310. [15] Yu Z Y, Luo Q, Peng Z S, Wei S H, Yang Z J, Yamamoto N. Genetic mapping of the three-pistil gene Pis1 in an F2 population derived from a synthetic hexaploid wheat using multiple molecular marker systems[J]. Cereal Research Communications, 2021, 49(1):31-36.doi:10.1007/s42976-020-00078-1. [16] 侯起岭, 赵昌平, 杨卫兵, 高建刚, 陈现朝, 杨吉芳, 白秀成, 张立平, 张风廷, 孙辉. 小麦光温敏雄性不育系穗发芽抗性鉴定及相关分子标记验证[J].麦类作物学报, 2020, 40(9):1023-1032.doi:10.7606/j.issn.1009-1041.2020.09.01. Hou Q L, Zhao C P, Yang W B, Gao J G, Chen X C, Yang J F, Bai X C, Zhang L P, Zhang F T, Sun H. Identification and validation of six molecular markers for PHS tolerence in photo-thermal sensitive male sterile lines of wheat[J]. Journal of Triticeae Crops, 2020, 40(9):1023-1032. [17] 朱靖环, 王其飞, 华为, 徐芹. 小麦种质材料赤霉病抗性鉴定及遗传多样性分析[J].麦类作物学报, 2020, 40(12):1461-1471.doi:10.7606/j.issn.1009-1041.2020.12.08. Zhu J H, Wang Q F, Hua W, Xu Q. Identification of resistance to Fusarium head blight and analysis of genetic diversity in wheat germplasm materials[J]. Journal of Triticeae Crops, 2020, 40(12):1461-1471. [18] 魏广辉, 李执, 陈强, 李阳, 陈诗豪, 裴英, 周勇, 程梦萍, 唐豪, 王际睿, 魏育明, 刘登才, 陈黎, 郑有良, 蒲至恩. 人工合成小麦SHW-L1高硒含量KASP分子标记开发及其应用[J].中国农业科学, 2020, 53(20):4103-4112.doi:10.3864/j.issn.0578-1752.2020.20.001. Wei G H, Li Z, Chen Q, Li Y, Chen S H, Pei Y, Zhou Y, Cheng M P, Tang H, Wang J R, Wei Y M, Liu D C, Chen L, Zheng Y L, Pu Z E. Development and utilization of KASP marker for Se concentration in synthetic wheat SHW-L1[J]. Scientia Agricultura Sinica, 2020, 53(20):4103-4112. [19] Tabassum S, Singh A, Pal A K. Enhanced production of maize pollen during extreme low temperature for DH wheat development in eastern Gangetic Plains of India[J]. Current Journal of Applied Science and Technology, 2018, 31(4):1-5.doi:10.9734/CJAST/2018/45994. [20] 杨在君, 彭正松, 周永红, 彭丽娟, 魏淑红. 利用SRAP分子标记评价小麦三雌蕊近等基因系的遗传背景[J].核农学报, 2012, 26(1):22-27. Yang Z J, Peng Z S, Zhou Y H, Peng L J, Wei S H. Evaluation on the genetic background of wheat near isogentic lines for three pistils character by SRAP markers[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(1):22-27. [21] Collins D W, Jukes T H. Rates of transition and transversion in coding sequences since the human-rodent divergence[J]. Genomics, 1994, 20(3):386-396.doi:10.1006/geno.1994.1192. [22] 王妍, 景岚, 李鑫淳. 向日葵锈菌转录组SNP位点挖掘及所在基因功能注释[J].华北农学报, 2018, 33(3):92-98.doi:10.7668/hbnxb.2018.03.015. Wang Y, Jing L, Li X C. SNP mining and gene functional annotation in Puccinia helianthi transcriptome group[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3):92-98. [23] 陈姝欣, 朱浩东, 杨梦思, 陶连德, 钟启文, 杨世鹏. 基于人参果转录组测序的SSR和SNP特征分析[J].西南农业学报, 2020, 33(11):2412-2416.doi:10.16213/j.cnki.scjas.2020.11.002. Chen S X, Zhu H D, Yang M S, Tao L D, Zhong Q W, Yang S P. Evaluation of SSR and SNP loci in Solanum muricatum based on transcriptome[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11):2412-2416. [24] 张雨, 夏铭泽, 张发起. 药用资源植物山莨菪的转录组信息分析[J].植物研究, 2020, 40(3):458-467.doi:10.7525/j.issn.1673-5102.2020.03.018. Zhang Y, Xia M Z, Zhang F Q. Transcriptome analysis for medicinal plant Anisodus tanguticus[J]. Bulletin of Botanical Research, 2020, 40(3):458-467. [25] Cavanagh C R, Chao S M, Wang S, Huang B E, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20):8057-8062.doi:10.1073/pnas.1217133110. [26] Wang S C, Wong D, Forrest K, Allen A, Chao S, Huang B E, et al. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array[J]. Plant Biotechnology Journal, 2014, 12(6):787-796.doi:10.1111/pbi.12183. |