[1] 张亚东,张颖慧,董少玲,陈涛,赵庆勇,朱镇,周丽瑟,姚姝,赵凌. 特大粒水稻材料粒型性状的QTL检测[J]. 中国水稻科学,2013, 27(2):122-128. doi:10.3969/j.issn.1001-7216.2013.02.003. Zhang Y D,Zhang Y H,Dong S L,Chen T,Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L. Identification of QTL for rice grain traits based on an extra-large grain material[J]. Chinese Journal of Rice Science,2013,27(2):122-128. [2] 高志强,占小登,梁永书,程式华,曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展[J]. 遗传,2011,33(4):314-321. doi:10.3724/SP.J.1005.2011.00314. Gao Z Q,Zhan X D,Liang Y S,Cheng S H,Cao L Y. Progress on genetics of rice grain shape trait and its related gene mapping and cloning[J]. Hereditas,2011,33(4):314-321. [3] Li S, Tian Y H, Wu K, Ye Y F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth metabolism coordination for sustainable agriculture[J]. Nature,2018, 560(7720):595-600. doi:10.1038/s41586-018-0415-5. [4] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice[J]. Journal of Integrative Plant Biology,2016, 58(10):836-847. doi:10.1111/jipb.12473. [5] Chen X L, Jiang L R, Zheng J S, Chen F Y, Wang T S, Wang M L, Tao Y, Wang H C, Hong Z L, Huang Y M, Huang R Y. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice[J]. Journal of Experimental Botany, 2019,70(15):3851-3866. doi:10.1093/jxb/erz192. [6] Wang S K, Li S, Liu Q, Wu K, Zhang J Q,Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015, 47(8):949-954. doi:10.1038/ng.3352. [7] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications,2018, 9(1):1240. doi:10.1038/s41467-018-03616-y. [8] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(45):19579-19584. doi:10.1073/pnas.1014419107. [9] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007, 39(5):623-630. doi:10.1038/ng2014. [10] Yan S, Zou G H, Li S J, Wang H, Liu H Q, Zhai G W, Guo P, Song H M, Yan C G, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics,2011,123(7):1173-1181. doi:10.1007/s00122-011-1657-x. [11] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics,2013, 45(6):707-711. doi:10.1038/ng.2612. [12] Hu Z J, Lu S J, Wang M J, He H H,Sun L,Wang H R, Liu X H, Jiang L,Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant,2018, 11(5):736-749. doi:10.1016/j.molp.2018.03.005. [13] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant,2018, 11(5):750-753. doi:10.1016/j.molp.2018.03.007. [14] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Mol Plant,2018, 11(5):754-756. doi:10.1016/j.molp.2018.03.006. [15] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants,2017, 3:17043. doi:10.1038/nplants.2017.43. [16] Park M, Lee J H, Han K, Jang S, Han J, Lim J H, Jung J W, Kang B C. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq[J]. Theoretical and Applied Genetics,2019, 132(2):515-529. doi:10.1007/s00122-018-3238-8. [17] Luo H Y, Pandey M K, Khan A W, Guo J B, Wu B, Cai Y, Huang L, Zhou X J, Chen Y N, Chen W G, Liu N, Lei Y, Liao B S, Varshney R K, Jiang H F.Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.)[J]. Plant Biotechnology Journal,2019,17(7):1248-1260. doi:10.1111/pbi.13050. [18] Qin Y B, Cheng P, Cheng Y C, Feng Y, Huang D R, Huang T X, Song X J, Ying J Z. QTL-Seq identified a major QTL for grain length and weight in rice using near isogenic F2 population[J]. Rice Science,2018,25(3):121-131. doi:10.1016/j.rsci.2018.04.001. [19] Luo X D, Liu J L, Zhao J, Dai L F, Chen Y L, Zhang L, Zhang F T, Hu B L, Xie J K. Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings[J]. Journal of Integrative Agriculture,2018,17(2):265-275. doi:10.1016/S2095-3119(17)61712-X. [20] 李国亮,张淑江,钱伟,李菲,章时蕃,张慧,方智远,孙日飞. 大白菜抗TuMV显性位点F2的QTL-seq分析[J]. 园艺学报,2019,46(2):307-316. doi:10.16420/j.issn.0513-353x.2018-0517. Li G L,Zhang S J,Qing W,Li F,Zhang S F,Zhang H,Fang Z Y,Sun R F. Genetic analysis of dominant locus involved in resistance to Turnip mosaic virus by QTL-seq in Chinese cabbage[J]. Acta Horticulture Sinica,2019, 46(2):307-316. [21] Hisano H, Sakamoto K, Takagi H, Terauchi R, Sato K. Exome QTL-seq maps monogenic locus and QTLs in barley[J]. BMC Genomics,2017, 18(1):125. doi:10.1186/s12864-017-3511-2. [22] Branham S E, Patrick Wechter W, Lambel S, Massey L, Ma M, Fauve J, Farnham M W, Levi A. QTL-seq and marker development for resistance to Fusarium oxysporum f. sp. niveum race 1 in cultivated watermelon[J]. Molecular Breeding,2018, 38(11):139. doi:10.1007/s11032-018-0896-9. [23] 张尧锋,张冬青,余华胜,林宝刚,华水金,丁厚栋,傅鹰. 基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位[J]. 中国农业科学,2018,51(16):3029-3039. doi:10.3864/j.issn.0578-1752.2018.16.001. Zhang Y F,Zhang D Q,Yu H S,Lin B G,Hua S J,Ding H D,Fu Y. Location and mapping of the determinate growth habit of Brassica napus by bulked segregant analysis (BSA) using whole genome re-sequencing[J]. Scientia Agricultura Sinica,2018,51(16):3029-3039. [24] Das S, Upadhyaya H D, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda C L L, Sharma S, Singh S, Tyagi A K, Parida S K. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea[J]. DNA Research, 2015, 22(3):193-203. doi:10.1093/dnares/dsv004. [25] Shu J S, Liu Y M, Zhang L L, Li Z S, Fang Z Y, Yang L M, Zhuang M, Zhang Y Y, Lü H H. QTL-seq for rapid identification of candidate genes for flowering time in broccoli×cabbage[J]. Theoretical and Applied Genetics, 2018, 131(4):917-928. doi:10.1007/s00122-017-3047-5. [26] 蔡建秀,陈伟. 水稻穗上发芽生理生化及颖壳扫描电镜观察[J]. 中国农学通报,2007, 23(8):207-211. doi:10.3969/j.issn.1000-6850.2007.08.045. Cai J X,Chen W. Study on the physiological biochemistry of pre-harvest sprouting and scanning electron microscopy of glume in rice[J]. Chinese Agricultural Science Bulletin,2007, 23(8):207-211. [27] 陆彦,张晓敏,祁琰,张昌泉,凌裕平,刘巧泉.不同透明度水稻籽粒横断面扫描电镜分析[J]. 中国水稻科学,2018,32(2):189-199. doi:10.16819/j.1001-7216.2018.7107. Lu Y,Zhang X M,Qi Y,Zhang C Q,Ling Y P,Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency[J]. Rice Science,2018,32(2):189-199. [28] 朱庆森,曹显祖,骆亦其. 水稻籽粒灌浆的生长分析[J]. 作物学报, 1988(3):182. Zhu Q S,Cao X Z,Luo Y Q. Growth analysis of grain filling in rice[J]. The Crop Journal,1988(3):182. [29] 董骥驰,杨靖,郭涛,陈立凯,陈志强,王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位[J]. 作物学报,2018, 44(6):938-946. doi:10.3724/SP.J.1006.2018.00938. Dong J C,Yang J,Guo T,Chen L K,Chen Z Q,Wang H.QTL mapping for heading date in rice using high-density Bin map[J]. Acta Agronomica Sinica,2018, 44(6):938-946. [30] Zhu Z Z, Li X Q, Wei Y, Guo S B, Sha A H. Identification of a novel QTL for panicle length from wild rice (Oryza minuta) by specific locus amplified fragment sequencing and high density genetic mapping[J]. Frontiers in Plant Science,2018,9:1492. doi:10.3389/fpls.2018.01492. [31] Jiang D, Fang J J, Lou L M, Zhao J F, Yuan S J, Yin L, Sun W, Peng L X, Guo B T, Li X Y. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division[J]. PLoS One, 2015, 10(2):e118169. doi:10.1371/journal.pone.0118169. [32] Cai Q, Yuan Z, Chen M J, Yin C S, Luo Z J, Zhao X X, Liang W Q, Hu J P, Zhang D B. Jasmonic acid regulates spikelet development in rice[J]. Nature Communications,2014, 5(1):3476. doi:10.1038/ncomms447. [33] 潘晓雪,姜华武,闫洪波,李美茹,吴国江.水稻ADP-葡萄糖焦磷酸化酶小亚基Ⅰ基因的启动子分析[J]. 热带亚热带植物学报,2008,16(3):189-194. Pan X X,Jiang H W,Yan H P,Li M R,Wu G J. Promoter analysis of the gene encoding ADP-glucose pyrophosphorylase small subunit in rice[J]. Journal of Tropical and Subtropical Botany,2008,16(3):189-194. |