[1] 廖伯寿,雷永,王圣玉,李栋,黄家权,姜慧芳,任小平. 花生重组近交系群体的遗传变异与高油种质的创新[J]. 作物学报,2008,34(6):999-1004. doi:10.3724/SP.J.1006.2008.00999. Liao B S,Lei Y,Wang S Y,Li D,Huang J Q,Jiang H F,Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes[J]. Acta Agronomica Sinica,2008,34(6):999-1004. [2] 姜慧芳,任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性[J]. 中国油料作物学报,2006,28(4):421-426.doi:10.3321/j.issn:1007-9084.2006.04.009. Jiang H F,Ren X P. Genetic diversity of peanut resource on morphological characters and seed chemical components in China[J]. Chinese Journal of Oil Crop Sciences,2006,28(4):421-426. [3] Wang Y H,Liu S J,Ji S L,Zhang W W,Wang C M,Jiang L,Wan J M. Fine mapping and marker-assisted selection(MAS) of a low glutelin content gene in rice[J]. Cell Research,2005,15(8):622-630. doi:10.1038/sj.cr.7290332. [4] Prasanna B M,Pixley K,Warburton M L,Xi C X. Molecular marker-assisted breeding options for maize improvement in Asia[J]. Molecular Breeding,2010,26(2):339-356. doi:10.1007/s11032-009-9387-3. [5] Chu Y,Wu C L,Holbrook C C,Tillman B L,Person G,Ozias-Akins P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut[J]. The Plant Genome,2011,4(2):110-117. doi:10.3835/plantgenome2011.01.0001. [6] Varshney R K,Pandey M K,Janila P,Nigam S N,Sudini H,Gowda M V C,Sriswathi M,Radhakrishnan T,Manohar S S,Nagesh P. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,2014,127(8):1771-1781. doi:10.1007/s00122-014-2338-3. [7] 禹山林,杨庆利,潘丽娟,薄文娜. 花生种子含油量的遗传分析[J]. 植物遗传资源学报,2009,10(3):453-456. Yu S L,Yang Q L,Pan L J,Bo W N. Genetic analysis for oil content of peanut seeds[J]. Journal of Plant Genetic Resources,2009,10(3):453-456. [8] 陈四龙,李玉荣,程增书,廖伯寿,雷永,刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析[J]. 中国农业科学,2009,42(9):3048-3057.doi:10.3864/j.issn.0578-1752.2009.09.005. Chen S L,Li Y R,Cheng Z S,Liao B S,Lei Y,Liu J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene[J]. Scientia Agricultura Sinica,2009,42(9):3048-3057. [9] Sarvamangala C,Gowda M V C,Varshney R K. Identification of quantitative trait loci for protein content,oil content and oil quality for groundnut(Arachis hypogaea L.)[J]. Field Crops Research,2011,122(1):49-59. doi:10.1016/j.fcr.2011.02.010. [10] Pandey M K,Wang M L,Qiao L X,Feng S P,Khera P,Wang H,Tonnis B,Barkley N A,Wang J P,Holbrook C C,Culbreath A K,Varshney R K,Guo B Z. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.)[J]. BMC Genetics,2014,15(1):133. doi:10.1186/s12863-014-0133-4. [11] Shasidhar Y,Vishwakarma M K,Pandey M K,Janila P,Variath M T,hasidhar Y,Vishwakarma M K,Pandey M K,Janila P,Variath M T,Manohar S S,Nigam S N,Guo B Z,Varshney R K. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut(Arachis hypogaea L.)[J]. Frontiers in Plant Science,2017,8:794. doi:10.3389/fpls.2017.00794. [12] Wilson J N,Chopra R,Baring M R,Selvaraj M G,Simpson C E,Chagoya J,Burow M D. Advanced backcross quantitative trait loci(QTL) analysis of oil concentration and oil quality traits in peanut(Arachis hypogaea L.)[J]. Tropical Plant Biology,2017,10(1):1-17. doi:10.1007/s12042-016-9180-5. [13] Liu N,Guo J B,Zhou X J,Wu B,Huang L,Luo H Y,Chen Y N,Chen W G,Lei Y,Huang Y,Liao B S,Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a~0.8-Mb region on chromosome A08 in peanut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,2020,133(1):37-49. doi:10.1007/s00122-019-03438-6. [14] Selvaraj M G,Narayana M,Schubert A M,Ayers J L,Baring M R,Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis[J]. Electronic Journal of Biotechnology,2009,12(2):1-10. doi:10.2225/vol12-issue2-fulltext-13. [15] 黄莉,赵新燕,张文华,樊志明,任小平,廖伯寿,姜慧芳,陈玉宁. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记[J]. 作物学报,2011,37(11):1967-1974. doi:10.3724/SP.J.1006.2011.01967. Huang L,Zhao X Y,Zhang W H Fan Z M,Ren X P,Liao B S,Jiang H F,Chen Y N. Identification of SSR markers linked to oil content in peanut(Arachis hypogaea L.) through RIL population and natural population[J]. Acta Agronomica Sinica,2011,37(11):1967-1974.doi:10.3724/SP.J.1006.2011.01967. [16] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H F, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes,polyploid evolution and crop domestication[J]. Nature Genetics,2019,51(5):865-876. doi:10.1038/s41588-019-0402-2. [17] Bertioli D J,Jenkins J,Clevenger J,Dudchenko O,Gao D Y,Seijo G,Leal-Bertioli S C M,Ren L H,Farmer A D,Pandey M K,Samoluk S S,Abernathy B,Agarwal G,Ball én-Taborda C,Cameron C,Campbell J,Chavarro C,Chitikineni A,Chu Y,Dash S,Baidouri M E,Guo B Z,Huang W,Kim K D,Korani W,Lanciano S,Lui C G,Mirouze M,Moretzsohn M C,Pham M,Shin J H,Shirasawa K,Sinharoy S,Sreedasyam A,Weeks N T,Zhang X Y,Zheng Z,Sun Z Q,Froenicke L,Aiden E L,Michelmore R,Varshney R K,Holbrook C C,Cannon E K S,Scheffler B E,Grimwood J,Ozias-Akins P,Cannon S B,Jackson S A,Schmutz J.The genome sequence of segmental allotetraploid peanut Arachis hypogaea[J]. Nature Genetics,2019,51(5):877-884. doi:10.1038/s41588-019-0405-z. [18] Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea,yields insights into genome evolution and oil improvement[J]. Molecular Plant,2019,12(7):920-934. doi:10.1016/j.molp.2019.03.005. [19] Meng L,Li H H,Zhang L Y,Wang J K. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283. doi:10.1016/j.cj.2015.01.001. [20] Zhang S Z, Hu X H, Miao H R, Chu Y, Cui F G, Yang W Q, Wang C M, Shen Y, Xu T T, Zhao L B, Zhang J C, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut(Arachis hypogaea L.)[J]. BMC Plant Biology,2019,19:537. doi:10.1186/s12870-019-2164-5. [21] Broman K W,Wu H,Sen S,Churchill G A. R/qtl:QTL mapping in experimental crosses[J]. Bioinformatics,2003,19(7):889-890. doi:10.1093/bioinformatics/btg112. [22] Ashburner M,Ball C A,Blake J A,Botstein D,Butler H,Cherry J M,Davis A P,Dolinski K,Dwight S S,Eppig J T,Harris M A,Hill D P,Issel-Tarver L,Kasarskis A,Lewis S,Matese J C,Richardson J E,Ringwald M,Rubin G M,Sherlock G. Gene ontology:tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29. doi:10.1038/75556. [23] Hu X H, Zhang S Z, Miao H R, Cui F G, Shen Y, Yang W Q, Xu T T, Chen N, Chi X Y, Zhang Z M, Chen J.High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs[J]. Scientific Reports,2018,8:5479.doi:10.1038/s41598-018-23873-7. [24] Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut[J]. Frontiers in Plant Science,2018,9:827. doi:10.3389/fpls.2018.00827. [25] Chu Y,Chee P,Culbreath A,Isleib T G,Holbrook C C,Ozias-Akins P. Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in peanut(Arachis hypogaea)[J]. Frontiers in Plant Science,2019,10:883. doi:10.3389/fpls.2019.00883. [26] Liu H, Sun Z Q, Zhang X Y, Qin L, Qi F Y, Wang Z Y, Du P, Xu J, Zhang Z X, Han S Y, Li S J, Gao M, Zhang L N, Cheng Y J, Zheng Z, Huang B Y, Dong W Z.QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing[J]. BMC Plant Biology,2020,20:249. doi:10.1186/s12870-020-02455-8. [27] 张胜忠,焦坤,胡晓辉,苗华荣,陈静. 花生百仁质量和含油量的遗传分析[J]. 花生学报,2018,47(4):7-12.doi:10.14001/j.issn.1002-4093.2018.04.002. Zhang S Z,Jiao K,Hu X H,Miao H R,Chen J. Genetic analysis for seed mass and oil content of peanuts[J]. Journal of Peanut Science,2018,47(4):7-12. [28] Zhao L F,Katavic V,Li F L,Haughn G W,Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1(LACS1),but not LACS8,functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis[J]. The Plant Journal,2010,64(6):1048-1058. doi:10.1111/j.1365-313X.2010.04396.x. [29] Yasuno R,Von Wettstein-Knowles P,Wada H. Identification and molecular characterization of the β-ketoacyl-[acyl carrier protein]synthase component of the Arabidopsis mitochondrial fatty acid synthase[J]. Journal of Biological Chemistry,2004,279(9):8242-8251. doi:10.1074/jbc.M308894200.V [30] Rylott E L,Eastmond P J,Gilday A D,Slocombe S P,Larson T R,Baker A,Graham I A. The Arabidopsis thaliana multifunctional protein gene(MFP2) of peroxisomal β-oxidation is essential for seedling establishment[J]. The Plant Journal,2006,45(6):930-941. doi:10.1111/j.1365-313X.2005.02650.x. [31] Guo Z H,Ye Z W,Haslam R P,Michaelson L V,Napier J A,Chye M L. Arabidopsis cytosolic acyl-CoA-binding proteins function in determining seed oil composition[J]. The Plant Direct,2019,3(12):00182. doi:10.1002/pld3.182. [32] DeBono A,Yeats T H,Rose J K C,Bird D,Jetter R,Kunst L,Samuels L. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface[J]. Plant Cell,2009,21(4):1230-1238. doi:10.1105/tpc.108.064451. [33] Hagiwara W E,Onishi K,Takamure O I,Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice[J]. Euphytica,2006,150(1):27-35. doi:10.1007/s10681-006-9085-8. [34] Balakrishnan D, Surapaneni M,Yadavalli V R,Addanki K R,Mesapogu S,Beerelli K,Neelamraju S. Detecting CSSLs and yield QTLs with additive,epistatic and QTL×environment interaction effects from Oryza sativa× O. nivara IRGC81832 cross[J]. Scientific Reports,2020,10:7766. doi:10.1038/s41598-020-64300-0. [35] Li Z K,Luo L J,Mei H W,Wang Q Y,Tabien R,Zhong D B,Ying C S,Stansel J W,Khush G S,Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. biomass and grain yield[J]. Genetics,2001,158:1755-1771. doi:10.1017/S0016672301005183. [36] Carlborg Ö,Haley C S. Epistasis:too often neglected in complex trait studies?[J]. Nature Reviews Genetics,2004,5(8):618-625. doi:10.1038/nrg1407. [37] Cho Y B,Jones S I,Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max[J]. The Plant Cell,2017,29(4):708. doi:10.1105/tpc.17.00162. |