[1] |
Zhang X F, Zheng Y F, Wang C Y, Chen H L, Ren Z H, Zou C H. Spatial distribution and temporal variation of the winter wheat late frost disaster in Henan,China[J]. Acta Meteorologica Sinica, 2011, 25(2):249-259.doi: 10.1007/s13351-011-0031-x.
URL
|
[2] |
Ji H T, Xiao L J, Xia Y M, Song H, Liu B, Tang L, Cao W X, Zhu Y, Liu L L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J]. Agricultural and Forest Meteorology, 2017, 243:33-42.doi: 10.1016/j.agrformet.2017.04.016.
URL
|
[3] |
Liu L L, Xia Y M, Liu B, Chang C Y, Xiao L J, Shen J, Tang L, Cao W X, Zhu Y. Individual and combined effects of jointing and booting low-temperature stress on wheat yield[J]. European Journal of Agronomy, 2020, 113(1):125989.doi: 10.1016/j.eja.2019.125989.
URL
|
[4] |
Martino D L, Abbate P E. Frost damage on grain number in wheat at different spike developmental stages and its modelling[J]. European Journal of Agronomy, 2019, 103:13-23.doi: 10.1016/j.eja.2018.10.010.
|
[5] |
Yue Y J, Zhou Y, Wang J A, Ye X Y. Assessing wheat frost risk with the support of GIS:an approach coupling a growing season meteorological index and a hybrid fuzzy neural network model[J]. Sustainability, 2016, 8(12):1308.doi: 10.3390/su8121308.
URL
|
[6] |
Xiao L J, Liu L L, Asseng S, Xia Y M, Tang L, Liu B, Cao W X, Zhu Y. Meteorology F:estimating spring frost and its impact on yield across winter wheat in China[J]. Agricultural and Forest Meteorology, 2018, 260/261:154-164.doi: 10.1016/j.agrformet.2018.06.006.
URL
|
[7] |
Zohner C M, Mo L D, Renner S S, Svenning J C, Vitasse Y, Benito B M, Ordonez A, Baumgarten F, Bastin J F, Sebald V, Reich P B, Liang J J, Nabuurs G J, de-Miguel S, Alberti G, Antón-Fernández C, Balazy R, Brändli U B, Chen H Y H, Chisholm C, Cienciala E, Dayanandan S, Fayle T M, Frizzera L, Gianelle D, Jagodzinski A M, Jaroszewicz B, Jucker T, Kepfer-Rojas S, Khan M L, Kim H S, Korjus H, Johannsen V K, Laarmann D, Lang M, Zawila-Niedzwiecki T, Niklaus P A, Paquette A, Pretzsch H, Saikia P, Schall P, Šebeň V, Svoboda M, Tikhonova E, Viana H, Zhang C Y, Zhao X H, Crowther T W. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(22):12192-12200.doi: 10.1073/pnas.1920816117.
|
[8] |
|
|
Xu C X. Research progress on the mechanism of improving plant cold hardiness[J]. Acta Ecologica Sinica, 2012, 32(24):7966-7980.
doi: 10.5846/stxb
URL
|
[9] |
沈漫, 王明庥, 黄敏仁. 植物抗寒机理研究进展[J]. 植物学通报, 1997(2):1-8.
|
|
Shen M, Wang M X, Huang M R. Advances in research on chilling resistance mechanisms of plants[J]. Chinese Bulletin of Botany, 1997(2):1-8.
|
[10] |
王小华, 庄南生. 脯氨酸与植物抗寒性的研究进展[J]. 中国农学通报, 2008, 24(11):398-402.
|
|
Wang X H, Zhuang N S. Advances in research on proline and cold resistance of plant[J]. Chinese Agricultural Science Bulletin, 2008, 24(11):398-402.
|
[11] |
Liu B, Seong K, Pang S H, Song J Q, Gao H, Wang C L, Zhai J Q, Zhang Y, Gao S, Li X D, Qi T C, Song S S. Functional specificity,diversity,and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth,development,and defense[J]. The New Phytologist, 2021, 231(4):1525-1545.doi: 10.1111/nph.17477.
URL
|
[12] |
Wasternack C, Hause B. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development.An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6):1021-1058.doi: 10.1093/aob/mct067.
pmid: 23558912
|
[13] |
|
|
Zhang Z X, Ze S Z, Hu L R, Liu L, Ji M. Research advance in biological activities of methyl jasmonate[J]. Journal of Henan Agricultural Sciences, 2018, 47(11):1-7.
|
[14] |
Ali M S, Baek K H. Jasmonic acid signaling pathway in response to abiotic stresses in plants[J]. International Journal of Molecular Sciences, 2020, 21(2):621.doi: 10.3390/ijms21020621.
URL
|
[15] |
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. The Plant Cell, 2011, 23(2):701-715.doi: 10.1105/tpc.110.080788.
pmid: 21335373
|
[16] |
Kazan K, Manners J M. MYC2:the master in action[J]. Molecular Plant, 2013, 6(3):686-703.doi: 10.1093/mp/sss128.
URL
|
[17] |
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling[J]. Current Opinion in Plant Biology, 2016, 33:147-156.doi: 10.1016/j.pbi.2016.07.005.
pmid: 27490895
|
[18] |
Mao Y B, Liu Y Q, Chen D Y, Chen F Y, Fang X, Hong G J, Wang L J, Wang J W, Chen X Y. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature Communications, 2017, 8:13925.doi: 10.1038/ncomms13925.
|
[19] |
蔡肖, 甄军波, 江振兴, 刘琳琳, 刘迪, 张建宏, 田海燕, 张香云, 迟吉娜. 陆地棉低温响应基因 GhJAZ1的克隆及表达分析[J]. 华北农学报, 2018, 33(1):7-13.doi: 10.7668/hbnxb.2018.01.002.
|
|
Cai X, Zhen J B, Jiang Z X, Liu L L, Liu D, Zhang J H, Tian H Y, Zhang X Y, Chi J N. Cloning and expression analysis of cold response gene GhJAZ1 from Gossypium hirsutum L[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1):7-13.
|
[20] |
Singh A P, Pandey B K, Mehra P, Heitz T, Giri J. OsJAZ9 overexpression modulates jasmonic acid biosynthesis and potassium deficiency responses in rice[J]. Plant Molecular Biology, 2020, 104(4/5):397-410.doi: 10.1007/s11103-020-01047-2.
|
[21] |
Zhu D, Cai H, Luo X, Bai X, Deyholos M K, Chen Q, Chen C, Ji W, Zhu Y M. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance[J]. Biochemical and Biophysical Research Communications, 2012, 426(2):273-279.doi: 10.1016/j.bbrc.2012.08.086.
URL
|
[22] |
Liu S H, Zhang P Y, Li C C, Xia G M. The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signalling pathway[J]. Plant Science, 2019, 280:1-11.doi: 10.1016/j.plantsci.2018.11.004.
pmid: 30823987
|
[23] |
Meng L, Zhang T, Geng S S, Scott P B, Li H Y, Chen S X. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis[J]. Journal of Proteomics, 2019, 196:81-91.doi: 10.1016/j.jprot.2019.02.001.
pmid: 30731210
|
[24] |
张自阳, 王智煜, 王斌, 王志伟, 朱启迪, 霍云风, 茹振钢, 刘明久. 春季穗分化阶段低温处理对不同小麦品种幼穗结实性及生理特性的影响[J]. 华北农学报, 2019, 34(4):130-139.doi: 10.7668/hbnxb.20190321.
|
|
Zhang Z Y, Wang Z Y, Wang B, Wang Z W, Zhu Q D, Huo Y F, Ru Z G, Liu M J. Effects of low temperature treatment at spring spike differentiation stage on young ear fruiting and physiological characteristics of different wheat varieties[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):130-139.
doi: 10.7668/hbnxb.20190321
|
[25] |
Bai Y H, Meng Y J, Huang D L, Qi Y H, Chen M. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2):128-136.doi: 10.1016/j.ygeno.2011.05.002.
pmid: 21616136
|
[26] |
Melotto M, Mecey C, Niu Y J, Chung H S, Katsir L, Yao J, Zeng W Q, Thines B, Staswick P, Browse J, Howe G A, He S Y. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine-and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein[J]. The Plant Journal, 2008, 55(6):979-988.doi: 10.1111/j.1365-313X.2008.03566.x.
pmid: 18547396
|
[27] |
Chung H S, Howe G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J]. The Plant Cell, 2009, 21(1):131-145.doi: 10.1105/tpc.108.064097.
URL
|
[28] |
薛辉, 余慷, 马晓玲, 刘晓丹, 宋艳红, 朱保磊, 刘冬成, 张爱民, 詹克慧. 黄淮麦区小麦品种耐倒春寒相关性状的评价及关联分析[J]. 麦类作物学报, 2018, 38(10):1174-1188.doi: 10.7606/j.issn.1009-1041.2018.10.05.
|
|
Xue H, Yu K, Ma X L, Liu X D, Song Y H, Zhu B L, Liu D C, Zhang A M, Zhan K H. Assessment and genome-wide association analysis of resistance to late-spring coldness in winter wheat from the yellow and Huai valley of China[J]. Journal of Triticeae Crops, 2018, 38(10):1174-1188.
|
[29] |
Han Q X, Kang G Z, Guo T C. Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat ( Triticum aestivum L.)[J]. Plant Physiology and Biochemistry, 2013, 63:236-244.doi: 10.1016/j.plaphy.2012.12.002.
URL
|
[30] |
Zhang S J, Song G Q, Gao J, Li Y L, Guo D, Fan Q Q, Sui X X, Chu X S, Huang C Y, Liu J J, Li G Y. Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat[J]. Journal of Biotechnology, 2014, 189:48-57.doi: 10.1016/j.jbiotec.2014.08.032.
pmid: 25240441
|
[31] |
Song G Q, Zhang R Z, Zhang S J, Li Y L, Gao J, Han X D, Chen M L, Wang J, Li W, Li G Y. Response of microRNAs to cold treatment in the young spikes of common wheat[J]. BMC Genomics, 2017, 18(1):212.doi: 10.1186/s12864-017-3556-2.
pmid: 28241738
|
[32] |
Ruan J J, Zhou Y X, Zhou M L, Yan J, Khurshid M, Weng W F, Cheng J P, Zhang K X. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10):2479.doi: 10.3390/ijms20102479.
URL
|
[33] |
Creelman R A, Mullet J E. Oligosaccharins,brassinolides,and jasmonates:nontraditional regulators of plant growth,development,and gene expression[J]. The Plant Cell, 1997, 9(7):1211-1223.doi: 10.1105/tpc.9.7.1211.
URL
|
[34] |
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana:crucial regulatory nodes and new physiological scenarios[J]. The New Phytologist, 2008, 177(2):301-318.doi: 10.1111/j.1469-8137.2007.02292.x.
URL
|
[35] |
Eremina M, Rozhon W, Poppenberger B. Hormonal control of cold stress responses in plants[J]. Cellular and Molecular Life Sciences, 2016, 73(4):797-810.doi: 10.1007/s00018-015-2089-6.
pmid: 26598281
|
[36] |
Xiao Y, Gao S H, Di P, Chen J F, Chen W S, Zhang L. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures[J]. Physiologia Plantarum, 2009, 137(1):1-9.doi: 10.1111/j.1399-3054.2009.01257.x.
URL
|
[37] |
Ishiga Y, Ishiga T, Uppalapati S R, Mysore K S. Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana[J]. PLoS One, 2013, 8(9):e75728.doi: 10.1371/journal.pone.0075728.
URL
|
[38] |
潘婷, 胡利伟, 王中, 刘瑞霞, 张剑锋, 李娟, 张林, 李锋, 王晨, 杨玉珍, 杨军, 武明珠. 烟草 JAZ1基因的克隆和功能分析[J]. 烟草科技, 2018, 51(12):15-22.doi: 10.16135/j.issn1002-0861.2018.0188.
|
|
Pan T, Hu L W, Wang Z, Liu R X, Zhang J F, Li J, Zhang L, Li F, Wang C, Yang Y Z, Yang J, Wu M Z. Cloning and function analysis of JAZ1 gene from Nicotiana tabacum[J]. Tobacco Science & Technology, 2018, 51(12):15-22.
|
[39] |
Zhai J L, Hao H, Xiao H, Cao Y X, Lin X G, Huang X. Identification of JAZ-interacting MYC transcription factors involved in latex drainage in Hevea brasiliensis[J]. Scientific Reports, 2018, 8(1):909.doi: 10.1038/s41598-018-19206-3.
|
[40] |
Wu H, Ye H Y, Yao R F, Zhang T, Xiong L Z. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice[J]. Plant Science, 2015, 232:1-12.doi: 10.1016/j.plantsci.2014.12.010.
pmid: 25617318
|
[41] |
Hu Y R, Jiang Y J, Han X, Wang H P, Pan J J, Yu D Q. Jasmonate regulates leaf senescence and tolerance to cold stress:crosstalk with other phytohormones[J]. Journal of Experimental Botany, 2017, 68(6):1361-1369.doi: 10.1093/jxb/erx004.
URL
|