[1] |
doi: 10.3969/j.issn.0006-3193.2020.09.003
|
|
Li G L. Summary of salt tolerance mechanism of halophytes and its role in improving soil[J]. Bulletin of Biology, 2020, 55(9):7-10.
|
[2] |
doi: 10.19754/j.nyyjs.20201215035
|
|
Fan W T. Study on the harm of soil salinization and its improvement methods[J]. Agriculture & Technology, 2020, 40(23):114-116.
|
[3] |
doi: 10.3969/j.issn.1003-1650.2019.09.116
|
|
Fu L N. Analysis and progress of improvement technology of saline soil[J]. Nongmin Zhifuzhiyou Yuekan, 2019(9):119.
|
[4] |
doi: 10.11733/j.issn.1007-0435.2017.02.002
|
|
Zhang K, Li M N, Cao S H, Sun Y. The research advances of molecular mechanisms of plant in responding to salt stress[J]. Acta Agrestia Sinica, 2017, 25(2):226-235.
|
[5] |
Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca 2+ signal?[J]. Trends in Plant Science, 2000, 5(4):154-159.doi: 10.1016/s1360-1385(00)01577-6.
doi: 10.1016/s1360-1385(00)01577-6
pmid: 10740296
|
[6] |
Xu J, Tian Y S, Peng R H, Xiong A S, Zhu B, Jin X F, Gao F, Fu X Y, Hou X L, Yao Q H. AtCPK6,a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta, 2010, 231(6):1251-1260.doi: 10.1007/s00425-010-1122-0.
doi: 10.1007/s00425-010-1122-0
URL
|
[7] |
Asano T, Hayashi N, Kikuchi S, Ohsugi R. CDPK-mediated abiotic stress signaling[J]. Plant Signaling & Behavior, 2012, 7(7):817-821.doi: 10.4161/psb.20351.
doi: 10.4161/psb.20351
|
[8] |
Mutlu H, Meier M A R. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112(1):10-30.doi: 10.1002/ejlt.200900138.
doi: 10.1002/ejlt.200900138
URL
|
[9] |
doi: 10.13271/j.mpb.016.004648
|
|
Cong J J, Wang X Y, Li P, Li H G, Zhang L X, Zhang J X. Cloning and expression vector construction of salt tolerant gene HKT in Ricinus communis[J]. Molecular Plant Breeding, 2018, 16(14):4648-4657.
|
[10] |
doi: 10.3969/j.issn.0517-6611.2007.34.101
|
|
Yan X C, Wang L J. The status in quo and foreground of exploiting Castor-oil plant as energy sources[J]. Journal of Anhui Agricultural Sciences, 2007, 35(34):11165,11167.
|
[11] |
doi: 10.13271/j.mpb.017.002048
|
|
Wang P Q, Liu X Y, Hu X L, Hu Z H, Yang J, Guo L F, Li W C. Advances and the effects of Castor for curing heavy metal contamination in soil[J]. Molecular Plant Breeding, 2019, 17(6):2048-2054.
|
[12] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[13] |
doi: 10.11931/guihaia.gxzw201911042
|
|
Yuan Z Y, Song X F, Zhu Y H. Cloning and expression analysis of calcium-dependent protein kinase genes in Rehmannia glutinosa[J]. Guihaia, 2020, 40(12):1816-1823.
|
[14] |
doi: 10.3969/j.issn.1000-369X.2019.03.005
|
|
Lei L, Wang L, Yao L N, Hao X Y, Zeng J M, Ding C Q, Wang X C, Yang Y J. Identification and expression analysis of calcium-dependent protein kinase CsCDPK17 in tea plant(Camellia sinensis)[J]. Journal of Tea Science, 2019, 39(3):267-279.
|
[15] |
张丽雪, 王晓宇, 李平, 李惠根, 丛娇娇, 张继星. 蓖麻Na +/H +逆向转运蛋白基因NhaD克隆与表达载体构建[J]. 基因组学与应用生物学, 2019, 38(7):3132-3139.doi: 10.13417/j.gab.038.003132.
doi: 10.13417/j.gab.038.003132
|
|
Zhang L X, Wang X Y, Li P, Li H G, Cong J J, Zhang J X. Cloning and expression vector construction of Na+/H+ antiporter in Castor(Ricinus communis)[J]. Genomics and Applied Biology, 2019, 38(7):3132-3139.
|
[16] |
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1056
|
|
Liu Z S, Liu Y Y, Qin Y J, Bi Q, Wang S S, Zhu J B. Cloning and expression analysis of SikCML7 gene from Saussurea involucrata[J]. Biotechnology Bulletin, 2019, 35(6):48-54.
|
[17] |
万丙良, 查中萍, 戚华雄. 钙依赖的蛋白激酶与植物抗逆性[J]. 生物技术通报, 2009(1):7-10.
|
|
Wan B L, Zha Z P, Qi H X. Calcium-dependent protein kinases(CDPKs)and plant tolerance to environmental stresses[J]. Biotechnology Bulletin, 2009(1):7-10.
|
[18] |
doi: 10.16433/j.cnki.issn1673-2383.2010.05.002
|
|
Geng S F, Zhao Y L, Li A L, Mao L, Wang W G, Li L. Research progress of evolution and function of calcium-dependent protein kinase in plant[J]. Journal of Henan University of Technology (Natural Science Edition), 2010, 31(5):86-92.
|
[19] |
doi: 10.3969/j.issn.1000-6850.2012.03.003
|
|
Yu X C, Na R, Zhang S Y. Research progress about calcium signal involved in plant resistance to disease[J]. Chinese Agricultural Science Bulletin, 2012, 28(3):12-16.
doi: 10.11924/j.issn.1000-6850.2011-2329
|
[20] |
doi: 10.14025/j.cnki.jlny.2017.09.064
|
|
Fei X Y, Li H L, Wang J H. Review on the function of plant calcium-dependent protein kinase CDPK gene[J]. Jilin Nongye, 2017(9):104-105.
|
[21] |
Zhang H C, Yin W L, Xia X L. Calcineurin B-Like family in populus:comparative genome analysis and expression pattern under cold,drought and salt stress treatment[J]. Plant Growth Regulation, 2008, 56(2):129-140.doi: 10.1007/s10725-008-9293-4.
doi: 10.1007/s10725-008-9293-4
URL
|
[22] |
Kudla J, Batistic O, Hashimoto K. Calcium signals:The lead currency of plant information processing[J]. The Plant Cell, 2010, 22(3):541-563.doi: 10.1105/tpc.109.072686.
doi: 10.1105/tpc.109.072686
pmid: 20354197
|
[23] |
Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases(CDPK)[J]. Biochimica et Biophysica Acta, 2013, 1833(7):1582-1589.doi: 10.1016/j.bbamcr.2012.10.024.
doi: 10.1016/j.bbamcr.2012.10.024
pmid: 23123193
|
[24] |
Li J X, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel[J]. Plant Physiology, 1998, 116(2):785-795.doi: 10.1104/pp.116.2.785.
doi: 10.1104/pp.116.2.785
pmid: 9489023
|
[25] |
Yahalom A, Lando R, Katz A, Epel B L. A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata[J]. Journal of Plant Physiology, 1998, 153(3/4):354-362.doi: 10.1016/S0176-1617(98)80162-4.
doi: 10.1016/S0176-1617(98)80162-4
URL
|
[26] |
Nishiyama R, Mizuno H, Okada S, Yamaguchi T, Takenaka M, Fukuzawa H, Ohyama K. Two mRNA species encoding calcium-dependent protein kinases are differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing[J]. Plant and Cell Physiology, 1999, 40(2):205-212.doi: 10.1093/oxfordjournals.pcp.a029529.
doi: 10.1093/oxfordjournals.pcp.a029529
pmid: 10202816
|
[27] |
Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat( Triticum aestivum L.)[J]. Plant Molecular Biology, 2008, 66(4):429-443.doi: 10.1007/s11103-007-9281-5.
doi: 10.1007/s11103-007-9281-5
URL
|
[28] |
Myers C, Romanowsky S M, Barron Y D, Garg S, Azuse C L, Curran A, Davis R M, Hatton J, Harmon A C, Harper J F. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes[J]. Plant J, 2009, 59(4):528-539.doi: 10.1111/j.1365-313x.2009.03894.x.
doi: 10.1111/j.1365-313x.2009.03894.x
URL
|
[29] |
doi: 10.1146/annurev-arplant-070109-104628
pmid: 20192754
|
[30] |
doi: 10.13430/j.cnki.jpgr.2014.06.021
|
|
Zhang Q P, Wen L, Wang F, Liao Z Q, Li H, Liu R Y, Guan C Y. Molecular cloning and expression analysis of calcium-dependent protein kinase BnCDPK1 in Brassica napus[J]. Journal of Plant Genetic Resources, 2014, 15:(6):1320-1326.
|
[31] |
张海斐. 甜瓜CDPK和CRK基因家族的鉴定及表达分析[D]. 杨凌: 西北农林科技大学, 2017.
|
|
Zhang H F. Identification and expression analysis of CDPK and CRK gene families in melon[D]. Yangling: Northwest A&F University, 2017.
|