[1] |
doi: 10.11674/zwyf.2011.0538
|
|
Su Y J, Liao W Y, Ding Y, Wang H S, Xia X J. Effects of nitrogen fertilization on yield and quality of tea[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(6):1430-1436.
|
[2] |
倪康, 廖万有, 伊晓云, 牛司耘, 马立锋, 石元值, 张群峰, 刘美雅, 阮建云. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3):421-432.doi: 10.11674/zwyf.18078.
doi: 10.11674/zwyf.18078
|
|
Ni K, Liao W Y, Yi X Y, Niu S Y, Ma L F, Shi Y Z, Zhang Q F, Liu M Y, Ruan J Y. Fertilization status and reduction potential in tea gardens of China[J]. Journal of Plant Nutrition and Fertilizes, 2019, 25(3):421-432.
|
[3] |
Luo L, Zhang Y L, Xu G H. How does nitrogen shape plant architecture?[J]. Journal of Experimental Botany, 2020, 71(15):4415-4427.doi: 10.1093/jxb/eraa187.
doi: 10.1093/jxb/eraa187
pmid: 32279073
|
[4] |
刘美雅, 汤丹丹, 矫子昕, 石元值, 马立锋, 张群峰, 阮建云. 适宜氮肥施用量显著提升夏季绿茶品质[J]. 植物营养与肥料学报, 2021, 27(8):1407-1419.doi: 10.11674/zwyf.2021012.
doi: 10.11674/zwyf.2021012
|
|
Liu M Y, Tang D D, Jiao Z X, Shi Y Z, Ma L F, Zhang Q F, Ruan J Y. Suitable nitrogen fertilization rate effectively improve the quality of summer green tea[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8):1407-1419.
|
[5] |
doi: 10.13292/j.1000-4890.202001.034
|
|
Li W, Xiang F, Zhou L Y, Liu H Y, Zeng Z X. Effects of nitrogen fertilizer reduction on photosynthesis and nitrogen use efficiency in tea plant[J]. Chinese Journal of Ecology, 2020, 39(1):93-98.
|
[6] |
Chen C S, Zhong Q S, Lin Z H, Yu W Q, Wang M K, Chen Z H, You X M. Screening tea varieties for nitrogen efficiency[J]. Journal of Plant Nutrition, 2017, 40(12):1797-1804.doi: 10.1080/01904167.2016.1193605.
doi: 10.1080/01904167.2016.1193605
URL
|
[7] |
Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. Nitrate transport and signalling in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(3):789-798.doi: 10.1093/jxb/eru001.
doi: 10.1093/jxb/eru001
pmid: 24532451
|
[8] |
doi: 10.11674/zwyf.2015.0323
|
|
Zhang P, Zhang R R, Du S T. Research advances in nitrate uptake and transport in plants[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3):752-762.
|
[9] |
doi: 10.15933/j.cnki.1004-3268.2021.09.014
|
|
Ma J J, Wu Y H, Li X, Li M L, Hou L P. Identification and bioinformatics analysis of NPF gene family members in Chinese cabbage (Brassica rapa subsp.pekinensis)[J]. Journal of Henan Agricultural Sciences, 2021, 50(9):117-127.
|
[10] |
doi: 10.13842/j.cnki.issn1671-8151.201712020
|
|
Zhang R J, Qu C L, He Y T, Yang Z R, Wang X C. Identification and gene expression analysis of the nitrate transporter NRT1 gene family in foxtail millet[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(4):37-43,76.
|
[11] |
Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants[J]. Trends Plant Sci, 2014, 19(1):5-9.doi: 10.1016/j.tplants.2013.08.008.
doi: 10.1016/j.tplants.2013.08.008
pmid: 24055139
|
[12] |
Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis[J]. Communications Biology, 2021, 4(1):256.doi: 10.1038/s42003-021-01775-1.
doi: 10.1038/s42003-021-01775-1
|
[13] |
Yang Y Y, Li X H, Ratcliffe R G, Ruan J Y. Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants[J]. Russian Journal of Plant Physiology, 2013, 60(1):91-99.doi: 10.1134/S1021443712060180.
doi: 10.1134/S1021443712060180
URL
|
[14] |
Wang W, Hu B, Li A F, Chu C C. NRT1.1s in plants:Functions beyond nitrate transport[J]. Journal of Experimental Botany, 2020, 71(15):4373-4379.doi: 10.1093/jxb/erz554.
doi: 10.1093/jxb/erz554
pmid: 31832669
|
[15] |
Shimizu T, Kanno Y, Suzuki H, Watanabe S, Seo M. Arabidopsis NPF4.6 and NPF5.1 control leaf stomatal aperture by regulating abscisic acid transport[J]. Genes, 2021, 12(6):885.doi: 10.3390/genes12060885.
doi: 10.3390/genes12060885
URL
|
[16] |
Zheng Y, Drechsler N, Rausch C, Kunze R. The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation[J]. Plant Signaling & Behavior, 2016, 11(5):e1176819.doi: 10.1080/15592324.2016.1176819.
doi: 10.1080/15592324.2016.1176819
|
[17] |
Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, Takeda-Kamiya N, Toyooka K, Kasahara H, Hayashi K I, Umeda M, Seo M. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49):31500-31509.doi: 10.1073/pnas.2013305117.
doi: 10.1073/pnas.2013305117
|
[18] |
Zhang F, He W, Yuan Q Y, Wei K, Ruan L Y, Wang L, Cheng H. Transcriptome analysis identifies CsNRT genes involved in nitrogen uptake in tea plants,with a major role of CsNRT2.4[J]. Plant Physiology and Biochemistry, 2021, 167:970-979.doi: 10.1016/j.plaphy.2021.09.024.
doi: 10.1016/j.plaphy.2021.09.024
pmid: 34571390
|
[19] |
Wen Z Y, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K S, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride[J]. The Plant Cell, 2017, 29(10):2581-2596.doi: 10.1105/tpc.16.00724.
doi: 10.1105/tpc.16.00724
URL
|
[20] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096
URL
|
[21] |
doi: 10.3969/j.issn.1000-369X.2016.01.012
|
|
Liu Y, Wang L Y, Wei K, Cheng H, Zhang F, Wu L Y, Hu J. Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant(Camellia sinensis)under different nitrogen nutrition[J]. Journal of Tea Science, 2016, 36(1):92-101.
|
[22] |
Willmann A, Thomfohrde S, Haensch R, Nehls U. The poplar NRT2 gene family of high affinity nitrate importers:Impact of nitrogen nutrition and ectomycorrhiza formation[J]. Environmental and Experimental Botany, 2014, 108:79-88.doi: 10.1016/j.envexpbot.2014.02.003.
doi: 10.1016/j.envexpbot.2014.02.003
URL
|
[23] |
Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:Responses to nitrate provision[J]. Plant and Cell Physiology, 2003, 44(3):304-317.doi: 10.1093/pcp/pcg036.
doi: 10.1093/pcp/pcg036
pmid: 12668777
|
[24] |
doi: 10.13592/j.cnki.ppj.2007.01.001
|
|
Wang Y, Hou H S. Structure and function of plant cyclic nucleotide-gated channel(CNGC) gene family[J]. Plant Physiology Communications, 2007, 43(1):1-8.
|
[25] |
Wang X H, Feng C X, Tian L L, Hou C C, Tian W, Hu B, Zhang Q, Ren Z J, Niu Q, Song J L, Kong D D, Liu L Y, He Y K, Ma L G, Chu C C, Luan S, Li L G. A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis[J]. Molecular Plant, 2021, 14(5):774-786.doi: 10.1016/j.molp.2021.02.005.
doi: 10.1016/j.molp.2021.02.005
URL
|
[26] |
doi: 10.3321/j.issn:0564-3929.2003.03.022
|
|
Li B Z, Fan X R, Xu G H. Molecular regulation for uptake and utilization of ammonium and nitrate in plant[J]. Plant Physiology Communications, 2009, 45(1):80-88.
|
[27] |
doi: 10.3969/j.issn.1000-369X.2020.05.002
|
|
Su J J, Ruan L, Wang L Y, Wei K, Wu L Y, Bai P X, Cheng H. Early identification of nitrogen absorption efficiency in tea plants[J]. Journal of Tea Science, 2020, 40(5):576-587.
|
[28] |
doi: 10.3969/j.issn.1000-369X.2004.02.004
|
|
Wang X C, Yang Y J, Chen L, Ruan J Y. Genotypic difference of nitrogen efficiency in tea plant(Camellia sinensis(L.) O.Kuntze)[J]. Journal of Tea Science, 2004, 24(2):93-98.
|