[1] |
|
|
Li J M, Xiang C Y, Wang X X, Guo Y M, Huang Z J, Liu L, Li X, Du Y C. Current situation of tomato industry in China during 'the thirteenth Five-Year Plan' period and future prospect[J]. China Vegetables, 2021(2):13-20.
|
[2] |
Zhu G T, Wang S C, Huang Z J, Zhang S B, Liao Q G, Zhang C Z, Lin T, Qin M, Peng M, Yang C K, Cao X, Han X, Wang X X, van der Knaap E, Zhang Z H, Cui X, Klee H, Fernie A R, Luo J, Huang S W. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2):249-261.doi: 10.1016/j.cell.2017.12.019.
|
[3] |
|
|
Ma Z H. The changing trend of tomato varieties in China from the perspective of production market demand[J]. China Vegetables, 2017(3):1-5.
|
[4] |
Cheung A Y, McNellis T, Piekos B. Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh[J]. Plant Physiology, 1993, 101(4):1223-1229.doi: 10.1104/pp.101.4.1223.
pmid: 12231777
|
[5] |
Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development[J]. The Plant Cell, 1993, 5(4):379-387.doi: 10.1105/tpc.5.4.379.
|
[6] |
Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z H, De Vos R C H, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network[J]. PLoS Genetics, 2009, 5(12):e1000777.doi: 10.1371/journal.pgen.1000777.
|
[7] |
Ballester A R, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernández-Moreno J P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A. Biochemical and molecular analysis of pink tomatoes:deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color[J]. Plant Physiology, 2010, 152(1):71-84.doi: 10.1104/pp.109.147322.
pmid: 19906891
|
[8] |
Fernandez-Moreno J P, Tzfadia O, Forment J, Presa S, Rogachev I, Meir S, Orzaez D, Aharoni A, Granell A. Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor[J]. Plant Physiology, 2016, 171(3):1821-1836.doi: 10.1104/pp.16.00282.
|
[9] |
Lin T, Zhu G T, Zhang J H, et al. Genomic analyses provide insights into the history of tomato breeding[J]. Nature Genetics, 2014, 46(11):1220-1226.doi: 10.1038/ng.3117.
pmid: 25305757
|
[10] |
|
|
Dong S F, Wang X X, Gao J C, Guo Y M, Huang Z J, Du Y C. Development and application of dCAPS and InDel markers in pink tomato fruit-related genes[J]. China Vegetables, 2016(1):24-29.
|
[11] |
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology, 2015, 32:76-84.doi: 10.1016/j.copbio.2014.11.007.
pmid: 25437637
|
[12] |
严芳, 周焕斌. CRISPR/Cas9技术在植物基因功能研究和新种质创制中的应用与展望[J]. 中国科学(生命科学), 2016, 46(5):498-513.doi: 10.1360/N052016-00158.
|
|
Yan F, Zhou H B. Overviews and applications of the CRISPR/Cas9 system in plant functional genomics and creation of new plant germplasm[J]. Scientia Sinica(Vitae), 2016, 46(5):498-513.
|
[13] |
Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5):369-375.doi: 10.1111/jipb.12620.
|
[14] |
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014, 14:327.doi: 10.1186/s12870-014-0327-y.
|
[15] |
Van Eck J, Keen P, Tjahjadi M. Agrobacterium tumefaciens -mediated transformation of tomato[M]// Transgenic Plants. New York: Springer New York, 2018:225-234.
|
[16] |
Deng L, Wang H, Sun C L, Li Q, Jiang H L, Du M M, Li C B, Li C Y. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system[J]. Journal of Genetics and Genomics, 2018, 45(1):51-54.doi: 10.1016/j.jgg.2017.10.002.
pmid: 29157799
|
[17] |
Chen K L, Wang Y P, Zhang R, Zhang H W, Gao C X. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70:667-697.doi: 10.1146/annurev-arplant-050718-100049.
pmid: 30835493
|
[18] |
|
|
Wang Y J, Ma L L, Liang Z. Research progress on CRISPR/Cas9 genome editing technology and its application in crop genetic improvement[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(12):1383-1392.
|
[19] |
|
|
Tang X, Wang G X, Liu F, Han S, Zong M, Guo N, Duan M M. Research progress in vegetables gene editing technology[J]. China Vegetables, 2022(8):17-30.
|
[20] |
Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014, 12(6):797-807.doi: 10.1111/pbi.12200.
pmid: 24854982
|
[21] |
Zhang S J, Zhang R Z, Gao J, Song G Q, Li J H, Li W, Qi Y P, Li Y L, Li G Y. CRISPR/Cas9-mediated genome editing for wheat grain quality improvement[J]. Plant Biotechnology Journal, 2021, 19(9):1684-1686.doi: 10.1111/pbi.13647.
pmid: 34143557
|
[22] |
Chilcoat D, Liu Z B, Sander J. Use of CRISPR/Cas 9 for crop improvement in maize and soybean[M]// Gene Editing in Plant. Amsterdam:Elsevier, 2017:27-46.doi: 10.1016/bs.pmbts.2017.04.005.
|
[23] |
|
|
Zhang A P, Liu J N, Yan J J, Zhang X Y, Bai Y F. Progress and prospect of genome editing in tomato[J]. Acta Horticulturae Sinica, 2022, 49(1):221-232.
doi: 10.16420/j.issn.0513-353x.2020-0976
|
[24] |
Nekrasov V, Wang C M, Win J, Lanz C, Weigel D, Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7(1):482.doi: 10.1038/s41598-017-00578-x.
pmid: 28352080
|
[25] |
Pramanik D, Shelake R M, Park J, Kim M J, Hwang I, Park Y, Kim J Y. CRISPR/Cas9-mediated generation of pathogen-resistant tomato against Tomato yellow leaf curl virus and powdery mildew[J]. International Journal of Molecular Sciences, 2021, 22(4):1878.doi: 10.3390/ijms22041878.
|
[26] |
Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. Efficient increase of γ-aminobutyric acid(GABA)content in tomato fruits by targeted mutagenesis[J]. Scientific Reports, 2017, 7:7057.doi: 10.1038/s41598-017-06400-y.
|
[27] |
Gao Y, Zhu N, Zhu X F, Wu M, Jiang C Z, Grierson D, Luo Y B, Shen W, Zhong S L, Fu D Q, Qu G Q. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants[J]. Horticulture Research, 2019, 6:39.doi: 10.1038/s41438-019-0122-x.
|
[28] |
Xu C, Park S J, Van Eck J, Lippman Z B. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators[J]. Genes & Development, 2016, 30(18):2048-2061.doi: 10.1101/gad.288415.116.
|
[29] |
Du M M, Zhou K, Liu Y Y, Deng L, Zhang X Y, Lin L H, Zhou M, Zhao W, Wen C L, Xing J Y, Li C B, Li C Y. A biotechnology-based male-sterility system for hybrid seed production in tomato[J]. The Plant Journal, 2020, 102(5):1090-1100.doi: 10.1111/tpj.14678.
pmid: 31923323
|
[30] |
Yang T X, Ali M, Lin L H, Li P, He H J, Zhu Q, Sun C L, Wu N, Zhang X F, Huang T T, Li C B, Li C Y, Deng L. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing[J]. Horticulture Research, 2023, 10(1):uhac214.doi: 10.1093/hr/uhac214.
|
[31] |
杨亮, 刘欢, 马燕勤, 李菊, 王海娥, 周玉洁, 龙海成, 苗明军, 李志, 常伟. 利用CRISPR/Cas9技术创制高番茄红素番茄新材料[J]. 园艺学报, 2024, 51(2): 253-265. doi: 10.16420/j.issn.0513-353x.2023-0782.
|
|
Yang L, Liu H, Ma Y Q, Li J, Wang H E, Zhou Y J, Long H C, Miao M J, Li Z, Chang W. Creating high lycopene fruit using CRISPR/Cas9 technology in tomato[J]. Acta Horticulturae Sinica, 2024, 51(2):253-265.
doi: 10.16420/j.issn.0513-353x.2023-0782
|
[32] |
杨孟霞, 刘晓林, 曹雪, 魏凯, 宁宇, 杨沛, 李珊珊, 陈紫月, 王孝宣, 国艳梅, 杜永臣, 李君明, 刘磊, 李鑫, 黄泽军. 番茄CRISPR/Cas9介导的多基因编辑技术体系构建与应用[J]. 园艺学报, 2023, 50(6): 1215-1229. doi: 10.16420/j.issn.0513-353x.2022-0339.
|
|
Yang M X, Liu X L, Cao X, Wei K, Ning Y, Yang P, Li S S, Chen Z Y, Wang X X, Guo Y M, Du Y C, Li J M, Liu L, Li X, Huang Z J. Construction and application of a CRISPR/Cas9 system for multiplex gene editing in tomato[J]. Acta Horticulturae Sinica, 2023, 50(6):1215-1229.
doi: 10.16420/j.issn.0513-353x.2022-0339
|