[1] |
Kochian L V, Piñeros M A, Liu J P, Magalhaes J V. Plant adaptation to acid soils:the molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015,66:571-598.doi: 10.1146/annurev-arplant-043014-114822.
|
[2] |
Agegnehu G, Amede T, Erkossa T, Yirga C, Henry C, Tyler R, Nosworthy M G, Beyene S, Sileshi G W. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems:a review[J]. Acta Agriculturae Scandinavica,Section B-Soil & Plant Science, 2021, 71(9):852-869.doi: 10.1080/09064710.2021.1954239.
|
[3] |
Rashmi I, Roy T, Kartika K S, Pal R, Coumar V, Kala S, Shinoji K C. Organic and inorganic fertilizer contaminants in agriculture:impact on soil and water resources[M]// Contaminants in Agriculture. Cham: Springer International Publishing,2020:3-41.doi: 10.1007/978-3-030-41552-5_1.
|
[4] |
Samac D A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soils a review[J]. Plant Cell,Tissue and Organ Culture, 2003, 75(3):189-207.doi: 10.1023/A:1025843829545.
|
[5] |
Tang C X, Weligama C, Sale P. Subsurface soil acidification in farming systems:its possible causes and management options[M]// Molecular Environmental Soil Science. Dordrecht: Springer Netherlands,2012:389-412.doi: 10.1007/978-94-007-4177-5_13.
|
[6] |
|
|
Qiao Q H, Huang R J, Sheng F R, Wang X M, Liu Q, Li J L, Ren Z X. Effects of different soil amendments on microbial community structure in acidified soil[J]. Soil and Fertilizer Sciences in China, 2023(2):62-72.
|
[7] |
Dai Z M, Zhang X J, Tang C, Muhammad N, Wu J J, Brookes P C, Xu J M. Potential role of biochars in decreasing soil acidification-a critical review[J]. The Science of the Total Environment, 2017, 581/582:601-611.doi: 10.1016/j.scitotenv.2016.12.169.
|
[8] |
|
|
Wu Y P, Wang M H, Xi J J, Pan J, Chen L Y, Lian Y, Sun H, Zhou P. The effects of different agricultural waste biochars and application rates on soil pH,water holding capacity and Nadsorption[J]. Soil and Fertilizer Sciences in China, 2019(1):87-92.
|
[9] |
|
|
Li M T. Biological characteristics and prevention measures of Solidago canadensis L.[J]. Journal of Agricultural Catastrophology, 2013, 3(4):29-30,37.
|
[10] |
Jien S H. Physical characteristics of biochars and their effects on soil physical properties[M]// Biochar from Biomass and Waste. Amsterdam:Elsevier,2019:21-35.doi: 10.1016/b978-0-12-811729-3.00002-9.
|
[11] |
Tian J, Wang J Y, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. The Science of the Total Environment, 2016, 556:89-97.doi: 10.1016/j.scitotenv.2016.03.010.
pmid: 26974565
|
[12] |
Bolan N, Sarmah A K, Bordoloi S, Bolan S, Padhye L P, Van Zwieten L, Sooriyakumar P, Khan B A, Ahmad M, Solaiman Z M, Rinklebe J, Wang H L, Singh B P, Siddique K H M. Soil acidification and the liming potential of biochar[J]. Environmental Pollution, 2023,317:120632.doi: 10.1016/j.envpol.2022.120632.
|
[13] |
Feng Q W, Wang B, Chen M, Wu P, Lee X Q, Xing Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications:a review[J]. Resources,Conservation and Recycling, 2021,164:105204.doi: 10.1016/j.resconrec.2020.105204.
|
[14] |
Weidlich E W A, Flórido F G, Sorrini T B, Brancalion P H S. Controlling invasive plant species in ecological restoration:a global review[J]. Journal of Applied Ecology, 2020, 57(9):1806-1817.doi: 10.1111/1365-2664.13656.
|
[15] |
Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Huang Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3):973-987.doi: 10.1093/jxb/eru456.
pmid: 25399020
|
[16] |
Hafeez A, Pan T W, Tian J H, Cai K Z. Modified biochars and their effects on soil quality:a review[J]. Environments, 2022, 9(5):60.doi: 10.3390/environments9050060.
|
[17] |
Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek S L, Singh A K. Silicon-mediated abiotic and biotic stress mitigation in plants:underlying mechanisms and potential for stress resilient agriculture[J]. Plant Physiology and Biochemistry, 2021, 163:15-25.doi: 10.1016/j.plaphy.2021.03.044.
pmid: 33799014
|
[18] |
Jin X, Rahman M K U, Ma C L, Zheng X Q, Wu F Z, Zhou X G. Silicon modification improves biochar's ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria[J]. Ecotoxicology and Environmental Safety, 2023,249:114407.doi: 10.1016/j.ecoenv.2022.114407.
|
[19] |
|
|
Wang L, Cai J H, Shao D X, Fan H L, Wang Y J, Qin S, Fan C W. Research progress and mechanism analysis of modified biochar for heavy metal pollution remediation[J]. Soil and Fertilizer Sciences in China, 2023(6):232-238.
|
[20] |
|
|
Dai W M, Zhang K Q, Duan B W, Sun C X, Zheng K L, Cai R, Zhuang J Y. Rapid determination of silicon content in rice (Oryza sativa)[J]. Chinese Journal of Rice Science, 2005, 19(5):460-462.
|
[21] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
|
Bao S D. Soil agrochemical analysis[M]. The 3rd edition. Beijing: China Agricultural Press, 2000.
|
[22] |
Cui X Y, Mao P, Sun S, Huang R, Fan Y X, Li Y X, Li Y W, Zhuang P, Li Z A. Phytoremediation of cadmium contaminated soils by Amaranthus hypochondriacus L.:the effects of soil properties highlighting cation exchange capacity[J]. Chemosphere, 2021,283:131067.doi: 10.1016/j.chemosphere.2021.131067.
|
[23] |
Jorge-Mardomingo I, Soler-Rovira P, Casermeiro M Á, de la Cruz M T, Polo A. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments[J]. Geoderma, 2013, 206:40-48.doi: 10.1016/j.geoderma.2013.04.025.
|
[24] |
Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic inorganic compound fertilizer with reduced chemical fertilizer application on crop yields,soil biological activity and bacterial community structure in a rice wheat cropping system[J]. Applied Soil Ecology, 2016, 99:1-12.doi: 10.1016/j.apsoil.2015.11.006.
|
[25] |
Rodriguez-Kabana R, Godoy G, Morgan-Jones G, Shelby R A. The determination of soil chitinase activity:conditions for assay and ecological studies[J]. Plant and Soil, 1983, 75(1):95-106.doi: 10.1007/BF02178617.
|
[26] |
Joergensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass:calibration of the KEN value[J]. Soil Biology and Biochemistry, 1996, 28(1):33-37.doi: 10.1016/0038-0717(95)00101-8.
|
[27] |
Song Z L, Wang H L, Strong P J, Shan S D. Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development, 2014, 34(4):813-819.doi: 10.1007/s13593-013-0202-5.
|
[28] |
|
|
Liu R, Gao Y, Li E L, Tian J H, Cai K Z. Effects of reduced nitrogen and biochar application on plant growth,dry matter accumulation and rice yield[J]. Ecology and Environmental Sciences, 2020, 29(5):926-932.
|
[29] |
John E, Matschei T, Stephan D. Nucleation seeding with calcium silicate hydrate-a review[J]. Cement and Concrete Research, 2018, 113:74-85.doi: 10.1016/j.cemconres.2018.07.003.
|
[30] |
Wiley B, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures:control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species[J]. Langmuir, 2005, 21(18):8077-8080.doi: 10.1021/la050887i.
|
[31] |
何京, 董建新, 丛萍, 宋文静, 马晓刚, 管恩森, 王大海. 玉米秸秆碳形态对植烟土壤有机碳及土壤综合肥力的快速提升效应[J]. 华北农学报, 2022, 37(2):132-141.doi: 10.7668/hbnxb.20192561.
|
|
He J, Dong J X, Cong P, Song W J, Ma X G, Guan E S, Wang D H. Rapid improvement of maize straw carbon form on soil organic carbon and comprehensive fertility in tobacco planting soil[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2):132-141.
doi: 10.7668/hbnxb.20192561
|
[32] |
Paul E A. The nature and dynamics of soil organic matter:plant inputs,microbial transformations,and organic matter stabilization[J]. Soil Biology and Biochemistry, 2016, 98:109-126.doi: 10.1016/j.soilbio.2016.04.001.
|
[33] |
Moeskops B, Buchan D, Van Beneden S, Fievez V, Sleutel S, Gasper M S, D'Hose T, De Neve S.The impact of exogenous organic matter on SOM contents and microbial soil quality[J]. Pedobiologia, 2012, 55(3):175-184.doi: 10.1016/j.pedobi.2012.03.001.
|
[34] |
Gul S, Whalen J K, Thomas B W, Sachdeva V, Deng H Y. Physico-chemical properties and microbial responses in biochar-amended soils:mechanisms and future directions[J]. Agriculture,Ecosystems & Environment, 2015, 206:46-59.doi: 10.1016/j.agee.2015.03.015.
|
[35] |
Whitmore A P, Kirk G J D, Rawlins B G. Technologies for increasing carbon storage in soil to mitigate climate change[J]. Soil Use and Management, 2015, 31(S1):62-71.doi: 10.1111/sum.12115.
|
[36] |
Chen L M, Sun S L, Zhou Y Y, Zhang B X, Peng Y T, Zhuo Y C, Ai W K, Gao C F, Wu B, Liu D W, Sun C R. Straw and straw biochar differently affect fractions of soil organic carbon and microorganisms in farmland soil under different water regimes[J]. Environmental Technology & Innovation, 2023,32:103412.doi: 10.1016/j.eti.2023.103412.
|
[37] |
Han L F, Sun K, Yang Y, Xia X, Li F B, Yang Z F, Xing B. Biochar's stability and effect on the content,composition and turnover of soil organic carbon[J]. Geoderma, 2020,364:114184.doi: 10.1016/j.geoderma.2020.114184.
|
[38] |
Mandal S, Pu S Y, Adhikari S, Ma H, Kim D H, Bai Y C, Hou D Y. Progress and future prospects in biochar composites:application and reflection in the soil environment[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(3):219-271.doi: 10.1080/10643389.2020.1713030.
|
[39] |
Wang Y F, Xiao X, Zhang K, Chen B L. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem[J]. Environmental Pollution, 2019, 248:823-833.doi: 10.1016/j.envpol.2019.02.072.
pmid: 30856498
|
[40] |
Liang Y C, Nikolic M, Bélanger R, Gong H J, Song A L. Effect of silicon on crop growth,yield and quality[M]// Silicon in Agriculture. Dordrecht:Springer, 2015.doi: 10.1007/978-94-017-9978-2_11.
|
[41] |
Houben D, Sonnet P, Cornelis J T. Biochar from Miscanthus:a potential silicon fertilizer[J]. Plant and Soil, 2014, 374(1):871-882.doi: 10.1007/s11104-013-1885-8.
|