[1] |
Petracci M, Cavani C. Muscle growth and poultry meat quality issues[J]. Nutrients, 2012, 4(1):1-12.doi: 10.3390/nu4010001.
pmid: 22347614
|
[2] |
|
|
Li J H, Xing S Y, Wang X C, Li Q H, Zhao G P, Zhang Y H, Wen J, Liu R R. Screening of candidate genes related to intramuscular fat deposition in chickens[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(6):1828-1836.
|
[3] |
Yu B, Liu J, Cai Z, Mu T, Gu Y, Xin G, Zhang J. miRNA-mRNA associations with inosine monophosphate specific deposition in the muscle of Jingyuan chicken[J]. British Poultry Science, 2022, 63(6):821-832.doi: 10.1080/00071668.2022.2106777.
URL
|
[4] |
张娟, 母童, 赵平, 陈佳萍, 冯小芳, 郭鹏, 武泽文, 刘丽元, 蒋秋斐, 顾亚玲. 静原鸡 ELOVL5基因遗传多样性研究[J]. 浙江农业学报, 2019, 31(2):200-206.doi: 10.3969/j.issn.1004-1524.2019.02.04.
|
|
Zhang J, Mu T, Zhao P, Chen J P, Feng X F, Guo P, Wu Z W, Liu L Y, Jiang Q F, Gu Y L. Polymorphism of ELOVL5 gene in Jingyuan chicken[J]. Acta Agriculturae Zhejiangensis, 2019, 31(2):200-206.
|
[5] |
DeBerardinis R J, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson C B. Beyond aerobic glycolysis:transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49):19345-19350.doi: 10.1073/pnas.0709747104.
pmid: 18032601
|
[6] |
Zhu J J, Thompson C B. Metabolic regulation of cell growth and proliferation[J]. Nature Reviews Molecular Cell Biology, 2019, 20(7):436-450.doi: 10.1038/s41580-019-0123-5.
pmid: 30976106
|
[7] |
Vainshtein A, Sandri M. Signaling pathways that control muscle mass[J]. International Journal of Molecular Sciences, 2020, 21(13):4759.doi: 10.3390/ijms21134759.
URL
|
[8] |
Thomson D M. The role of AMPK in the regulation of skeletal muscle size,hypertrophy,and regeneration[J]. International Journal of Molecular Sciences, 2018, 19(10):3125.doi: 10.3390/ijms19103125.
URL
|
[9] |
Shan T Z, Xu Z Y, Liu J Q, Wu W C, Wang Y Z. Lkb1 regulation of skeletal muscle development,metabolism and muscle progenitor cell homeostasis[J]. Journal of Cellular Physiology, 2017, 232(10):2653-2656.doi: 10.1002/jcp.25786.
URL
|
[10] |
Rathmell J C, Fox C J, Plas D R, Hammerman P S, Cinalli R M, Thompson C B. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival[J]. Molecular and Cellular Biology, 2003, 23(20):7315-7328.doi: 10.1128/MCB.23.20.7315-7328.2003.
|
[11] |
Wieman H L, Wofford J A, Rathmell J C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking[J]. Molecular Biology of the Cell, 2007, 18(4):1437-1446.doi: 10.1091/mbc.e06-07-0593.
pmid: 17301289
|
[12] |
Xiang C, Zhang Y N, Chen Q L, Sun A N, Peng Y M, Zhang G X, Zhou D X, Xie Y Y, Hou X S, Zheng F F, Wang F, Gan Z J, Chen S, Liu G. Increased glycolysis in skeletal muscle coordinates with adipose tissue in systemic metabolic homeostasis[J]. Journal of Cellular and Molecular Medicine, 2021, 25(16):7840-7854.doi: 10.1111/jcmm.16698.
pmid: 34227742
|
[13] |
Peterson L L. Red cell diphosphoglycerate mutase.immunochemical studies in vertebrate red cells,including a human variant lacking 2,3-DPG[J]. Blood, 1978, 52(5):953-958.doi: 10.1182/blood.V52.5.953.
pmid: 151563
|
[14] |
van Wijk R, van Solinge W W. The energy-less red blood cell is lost:erythrocyte enzyme abnormalities of glycolysis[J]. Blood, 2005, 106(13):4034-4042.doi: 10.1182/blood-2005-04-1622.
|
[15] |
Azzuolo A, Yang Y X, Berghuis A, Fodil N, Gros P. Biphosphoglycerate mutase:a novel therapeutic target for malaria?[J]. Transfusion Medicine Reviews, 2023, 37(3):150748.doi: 10.1016/j.tmrv.2023.150748.
URL
|
[16] |
郭茜文, 李文斌, 王荣, 李加忠, 张汝学, 张晓静, 王子晗. 激活红细胞2,3-二磷酸甘油酸变位酶活性的中药组分筛选[J]. 浙江大学学报(医学版), 2022, 51(4):430-437.doi: 10.3724/zdxbyxb-2022-0178.
|
|
Guo Q W, Li W B, Wang R, Li J Z, Zhang R X, Zhang X J, Wang Z H. Screening of activators of 2,3-diphosphoglycerate mutase from traditional Chinese herb medicines[J]. Journal of Zhejiang University (Medical Sciences), 2022, 51(4):430-437.
|
[17] |
Wang Y L, Wei Z Y, Bian Q, Cheng Z J, Wan M, Liu L, Gong W M. Crystal structure of human bisphosphoglycerate mutase[J]. The Journal of Biological Chemistry, 2004, 279(37):39132-39138.doi: 10.1074/jbc.M405982200.
URL
|
[18] |
Yu B J, Cai Z Y, Liu J M, Zhao W, Fu X, Gu Y L, Zhang J. Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle[J]. Frontiers in Physiology, 2023,14:1199311.doi: 10.3389/fphys.2023.1199311.
|
[19] |
虎红红, 母童, 马正旭, 冯小芳, 蔡正云, 黄增文, 顾亚玲, 辛国省, 张娟. 基于RNA-seq技术对静原鸡不同部位肉质相关差异基因的筛选[J]. 基因组学与应用生物学, 2021, 40(S1):2038-2046.doi: 10.13417/j.gab.040.002038.
|
|
Hu H H, Mu T, Ma Z X, Feng X F, Cai Z Y, Huang Z W, Gu Y L, Xin G S, Zhang J. Screening of meat quality-related differential genes in different parts of Jingyuan chicken based on RNA-seq technology[J]. Genomics and Applied Biology, 2021, 40(S1):2038-2046.
|
[20] |
Huang Z W, Zhang J, Gu Y L, Cai Z Y, Wei D W, Feng X F, Yang C Y. Analysis of the molecular mechanism of inosine monophosphate deposition in Jingyuan chicken muscles using a proteomic approach[J]. Poultry Science, 2022, 101(4):101741.doi: 10.1016/j.psj.2022.101741.
URL
|
[21] |
张娟. 家禽生产学[M]. 北京: 中国农业出版社,2023:59-70.
|
|
Zhang J. Poultry production[M]. Beijing: China Agricultural Press,2023:59-70.
|
[22] |
Chai W Q, Qu H L, Ma Q G, Zhu M X, Li M M, Zhan Y D, Liu Z W, Xu J, Yao H F, Li Z Y, Wang C F. RNA-seq analysis identifies differentially expressed gene in different types of donkey skeletal muscles[J]. Animal Biotechnology, 2023, 34(5):1786-1795.doi: 10.1080/10495398.2022.2050920.
URL
|
[23] |
Zhou B H, Lin W L, Long Y L, Yang Y K, Zhang H, Wu K M, Chu Q. Notch signaling pathway:architecture,disease,and therapeutics[J]. Signal Transduction and Targeted Therapy, 2022, 7(1):95.doi: 10.1038/s41392-022-00934-y.
|
[24] |
Hayat R, Manzoor M, Hussain A. Wnt signaling pathway:a comprehensive review[J]. Cell Biology International, 2022, 46(6):863-877.doi: 10.1002/cbin.11797.
URL
|
[25] |
Andrade G M, da Silveira J C, Perrini C, Del Collado M, Gebremedhn S, Tesfaye D, Meirelles F V, Perecin F. The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes[J]. PLoS One, 2017, 12(9):e0185045.doi: 10.1371/journal.pone.0185045.
URL
|
[26] |
Wang J, Huang Y Z, Xu J W, Yue B L, Wen Y F, Wang X, Lei C Z, Chen H. Pleomorphic adenoma gene 1( PLAG1)promotes proliferation and inhibits apoptosis of bovine primary myoblasts through the PI3K-Akt signaling pathway[J]. Journal of Animal Science, 2022, 100(4):skac098.doi: 10.1093/jas/skac098.
|
[27] |
Li H W, Chen X L, Chen D W, Yu B, He J, Zheng P, Luo Y H, Yan H, Chen H, Huang Z Q. Ellagic acid alters muscle fiber-type composition and promotes mitochondrial biogenesis through the AMPK signaling pathway in healthy pigs[J]. Journal of Agricultural and Food Chemistry, 2022, 70(31):9779-9789.doi: 10.1021/acs.jafc.2c04108.
pmid: 35916165
|
[28] |
Zhang X D, Zhang W B, Wang Z J, Zheng N N, Yuan F F, Li B, Li X L, Deng L, Lin M, Chen X, Zhang M J. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling[J]. Cell Death & Disease, 2022, 13(1):87.doi: 10.1038/s41419-022-04541-1.
|
[29] |
Li P, Zhao Y H, Liu Y Z, Zhao Y L, Yan Y Q, Li S, Li S F, Tong H L. Cyanocobalamin promotes muscle development through the TGF-β signaling pathway[J]. Food & Function, 2022, 13(24):12721-12732.doi: 10.1039/d2fo00315e.
|
[30] |
Visakh R, Abdul Nazeer K A. Identifying epigenetically dysregulated pathways from pathway-pathway interaction networks[J]. Computers in Biology and Medicine, 2016, 76:160-167.doi: 10.1016/j.compbiomed.2016.06.030.
pmid: 27454244
|
[31] |
Prabhakar A, González B, Dionne H, Basu S, Cullen P J. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast[J]. Journal of Cell Science, 2021, 134(15):jcs258341.doi: 10.1242/jcs.258341.
|
[32] |
Chen R, Wen C, Gu Y F, Wang C, Chen Y P, Zhuang S, Zhou Y M. Dietary betaine supplementation improves meat quality of transported broilers through altering muscle anaerobic glycolysis and antioxidant capacity[J]. Journal of the Science of Food and Agriculture, 2020, 100(6):2656-2663.doi: 10.1002/jsfa.10296.
pmid: 31997359
|
[33] |
Chen R, Yang M, Song Y D, Wang R X, Wen C, Liu Q, Zhou Y M, Zhuang S. Effect of anhydrous betaine and hydrochloride betaine on growth performance,meat quality,postmortem glycolysis,and antioxidant capacity of broilers[J]. Poultry Science, 2022, 101(4):101687.doi: 10.1016/j.psj.2021.101687.
URL
|
[34] |
Liu Y S, Liu Z, Xing T, Li J L, Zhang L, Zhao L, Gao F. Effect of chronic heat stress on the carbonylation of glycolytic enzymes in breast muscle and its correlation with the growth performance of broilers[J]. Poultry Science, 2023, 102(12):103103.doi: 10.1016/j.psj.2023.103103.
URL
|
[35] |
Zhang L, Yue H Y, Zhang H J, Xu L, Wu S G, Yan H J, Gong Y S, Qi G H. Transport stress in broilers:I.Blood metabolism,glycolytic potential,and meat quality[J]. Poultry Science, 2009, 88(10):2033-2041.doi: 10.3382/ps.2009-00128.
pmid: 19762854
|
[36] |
Wang H J, Pu J N, Chen D W, Tian G, Mao X B, Yu J, Zheng P, He J, Huang Z Q, Yu B. Effects of dietary amylose and amylopectin ratio on growth performance,meat quality,postmortem glycolysis and muscle fibre type transformation of finishing pigs[J]. Archives of Animal Nutrition, 2019, 73(3):194-207.doi: 10.1080/1745039X.2019.1583518.
URL
|
[37] |
Bai W, Zhang Y X, Ma J, Du M M, Xu H Y, Wang J, Zhang L, Li W T, Hou Y Q, Liu X M, Zhang X Y, Peng Y X, Li J N, Zhan X Z, Jiang W, Liu S S, Liu X, Li Q Y, Miao Y, Sui M R, Yang Y H, Zhang S H, Xu Z Y, Zuo B. FHL3 promotes the formation of fast glycolytic muscle fibers by interacting with YY1 and muscle glycolytic metabolism[J]. Cellular and Molecular Life Sciences, 2023, 80(1):27.doi: 10.1007/s00018-022-04680-w.
pmid: 36602641
|
[38] |
Gangat N, Oliveira J L, Porter T R, Hoyer J D, Al-Kali A, Patnaik M M, Pardanani A, Tefferi A. Erythrocytosis associated with EPAS1(HIF2A),EGLN1(PHD2),VHL,EPOR or BPGM mutations:the Mayo Clinic experience[J]. Haematologica, 2022, 107(5):1201-1204.doi: 10.3324/haematol.2021.280516.
URL
|
[39] |
Xu G Y, van Bruggen R, Gualtieri C O, Moradin N, Fois A, Vallerand D, De Sa Tavares Russo M, Bassenden A, Lu W Y, Tam M, Lesage S, Girouard H, Avizonis D Z, Deblois G, Prchal J T, Stevenson M, Berghuis A, Muir T, Rabinowitz J, Vidal S M, Fodil N, Gros P. Bisphosphoglycerate mutase deficiency protects against cerebral malaria and severe malaria-induced anemia[J]. Cell Reports, 2020, 32(12):108170.doi: 10.1016/j.celrep.2020.108170.
URL
|
[40] |
Tan X F, He Y, He Y Q, Yan Z W, Chen J, Zhao R X, Sui X, Zhang L, Du X H, Irwin D M, Zhang S Y, Li B J. Comparative proteomic analysis of glycolytic and oxidative muscle in pigs[J]. Genes, 2023, 14(2):361.doi: 10.3390/genes14020361.
URL
|
[41] |
Zhou M, Sun X, Wang C L, Wang F D, Fang C B, Hu Z L. PFKM inhibits doxorubicin-induced cardiotoxicity by enhancing oxidative phosphorylation and glycolysis[J]. Scientific Reports, 2022, 12(1):11684.doi: 10.1038/s41598-022-15743-0.
pmid: 35804014
|
[42] |
Gao J, Zhao Y W, Li T, Gan X Q, Yu H Y. The role of PKM2 in the regulation of mitochondrial function:focus on mitochondrial metabolism,oxidative stress,dynamic,and apoptosis.PKM2 in mitochondrial function[J]. Oxidative Medicine and Cellular Longevity, 2022,2022:7702681.doi: 10.1155/2022/7702681.
|
[43] |
Guoji E, Sun B D, Liu B, Xu G, He S, Wang Y, Feng L, Wei H N, Zhang J Y, Chen J, Gao Y Q, Zhang E L. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2[J]. Brain Research Bulletin, 2023, 192:36-46.doi: 10.1016/j.brainresbull.2022.11.002.
URL
|
[44] |
Fu W M, Poo M M. ATP potentiates spontaneous transmitter release at developing neuromuscular synapses[J]. Neuron, 1991, 6(5):837-843.doi: 10.1016/0896-6273(91)90179-4.
pmid: 2025429
|
[45] |
Young J H, Mclick J, Korman E F. Pseudorotation mechanism of ATP hydrolysis in muscle contraction[J]. Nature, 1974, 249(456):474-476.doi: 10.1038/249474a0.
|