[1] Cubas P,Lauter N,Doebley J,Coen E. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal,1999,18(2):215-222.doi:10.1046/j.1365-313X.1999.00444.x. [2] Kosugi S,Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal,2002,30(3):337-348.doi:10.1046/j.1365-313x.2002.01294.x. [3] 刘丽娟,高辉.TCP家族基因研究进展[J].生物技术通报,2016,32(9):14-22.doi:10.13560/j.cnki.biotech.bull.1985.2016.09.003. Liu L J,Gao H. Research progress on the family of TCP genes[J]. Biotechnology Bulletin,2016,32(9):14-22. [4] Koyama T,Mitsuda N,Seki M,Shinozaki K,Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164,as well as the auxin response,during differentiation of leaves in Arabidopsis[J]. The Plant Cell,2010,22(11):3574-3588.doi:10.1105/tpc.110.075598. [5] He Z M,Zhao X Y,Kong F N,Zuo Z C,Liu X M. TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis[J]. Journal of Experimental Botany,2016,67(3):775-785.doi:10.1093/jxb/erv495. [6] Kong Y Y,Zhu Y B,Gao C,She W J,Lin W Q,Chen Y,Han N,Bian H W,Zhu M Y,Wang J H.Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis[J]. Plant and Cell Physiology,2013,54(4):609-621.doi:10.1093/pcp/pct028. [7] Sun N,Wang J,Gao Z,Dong J,He H,Terzaghi W,Wei N,Deng X W,Chen H. Arabidopsis SAURs are critical for differential light regulation of the development of various organs[J]. P Natl Acad Sci USA,2016,113(21):6071-6076.doi:10.1073/pnas.1604782113. [8] Shi H,Lyu M H,Luo Y W,Liu S C,Li Y,He H,Wei N,Deng X W,Zhong S W. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(25):6482-6487.doi:10.1073/pnas.1803861115. [9] Zhang Y,Mayba O,Pfeiffer A,Shi H,Tepperman J M,Speed T P,Quail P H. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis[J]. PLoS Genetics,2013,9(1):e1003244.doi:10.1371/journal.pgen.1003244. [10] Dong J,Sun N,Yang J,Deng Z G,Lan J Q,Qin G J,He H,Deng X W,Irish V F,Chen H D,Wei N. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis[J]. The Plant Cell,2019,31(5):1155-1170.doi:10.1105/tpc.18.00803. [11] Nag A,King S,Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(52):22534-22539.doi:10.1073/pnas.0908718106. [12] Challa K R,Aggarwal P,Nath U. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis[J]. The Plant Cell,2016,28(9):2117-2130.doi:10.1105/tpc.16.00360. [13] Sarvepalli K,Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation[J]. The Plant Journal,2011,67(4):595-607.doi:10.1111/j.1365-313x.2011.04616.x. [14] Patra B,Pattanaik S,Yuan L. Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3,regulators of trichome development and flavonoid biosynthesis in Arabidopsis[J]. Plant Journal,2013,74(3):435-447.doi:10.1111/tpj.12132. [15] Kasili R,Huang C C,Walker J D,Simmons L A,Zhou J,Faulk C,H lskamp M,Larkin J C. BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes[J]. Development,2011,138(11):2379-2388.doi:10.1242/dev.058982. [16] Vadde B V L,Challa K R,Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana[J]. The Plant Journal,2018,93(2):259-269.doi:10.1111/tpj.13772. [17] Schommer C,Debernardi J M,Bresso E G,Rodriguez R E,Palatnik J F. Repression of cell proliferation by miR319-regulated TCP4[J]. Molecular Plant,2014,7(10):1533-1544.doi:10.1093/mp/ssu084. [18] Rodriguez R E,Mecchia M A,Debernardi J M,Schommer C,Weigel D,Palatnik J F. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development,2010,137(1):103-112.doi:10.1242/dev.043067. [19] Bresso E G,Chorostecki U,Rodriguez R E,Palatnik J F,Schommer C. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J]. Plant Physiology,2018,176(2):1694-1708.doi:10.1104/pp.17.00823. [20] Johansson M,Staiger D. Time to flower:Interplay between photoperiod and the circadian clock[J]. Journal of Experimental Botany,2015,66(3):719-730.doi:10.1093/jxb/eru441. [21] Shim J S,Kubota A,Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration[J]. Plant Physiology,2017,173(1):5-15.doi:10.1104/pp.16.01327. [22] Fornara F,Panigrahi K C S,Gissot L,Sauerbrunn N,R hl M,Jarillo J A,Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell,2009,17(1):75-86.doi:10.1016/j.devcel.2009.06.015. [23] Ito S,Song Y H,Josephson-Day A R,Miller R J,Breton G,Olmstead R G,Imaizumi T. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(9):3582-3587.doi:10.1073/pnas.1118876109. [24] Cubas P,Lauter N,Doebley J,Coen E. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal,1999,18(2). 215-222.doi:10.1046/j.1365-313X.1999.00444.x. [25] Kubota A,Ito S,Shim J S,Johnson R S,Song Y H,Breton G,Goralogia G S,Kwon M S,Laboy Cintr n D,Koyama T,Ohme-Takagi M,Pruneda-Paz J L,Kay S A,MacCoss M J,Imaizumi T.TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis[J]. PLoS Genetics,2017,13(6):e1006856.doi:10.1371/journal.pgen.1006856. [26] 王瑞元. 中国食用植物油加工业的现状与发展趋势[J].粮油食品科技,2017,25(3):4-9.doi:10.16210/j.cnki.1007-7561.2017.03.002. Wang R Y. The current situation and development trend of China's edible vegetable oil processing industry[J]. Science and Technology of Cereals, Oils and Foods,2017,25(3):4-9. [27] 滕红梅,王艳萍,闫丽清,曹发昊,郝浩永. 中条山区域野生油脂植物资源及特征分析[J].中国油脂,2020,45(9):137-144.doi:10.12166/j.zgyz.1003-7969/2020.09.026. Teng H M,Wang Y P,Yan L Q,Cao F H,Hao H Y. Resources and characteristics of wild oil plants in Zhongtiaoshan area[J]. China Oils and Fats,2020,45(9):137-144. [28] Chapman K D,Ohlrogge J B. Compartmentation of triacylglycerol accumulation in plants[J]. Journal of Biological Chemistry,2012,287(4):2288-2294.doi:10.1074/jbc.R111.290072. [29] Focks N,Benning C. wrinkled1:A novel,low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiology,1998,118(1):91-101.doi:10.1104/pp.118.1.91. [30] Kong Q,Singh S K,Mantyla J J,Pattanaik S,Guo L,Yuan L,Benning C,Ma W. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 interacts with WRINKLED1 to mediate seed oil biosynthesis[J]. Plant Physiology,2020,184(2):658-665.doi:10.1104/pp.20.00547. [31] Li B S,Qin Y R,Duan H,Yin W L,Xia X L. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experimental Botany,2011,62(11):3765-3779.doi:10.1093/jxb/err051. [32] Yu X,Wang H,Lu Y Z,de Ruiter M,Cariaso M,Prins M,van Tunen A,He Y K. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa[J]. Journal of Experimental Botany,2012,63(2):1025-1038.doi:10.1093/jxb/err337. [33] Waters B M,McInturf S A,Stein R J. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana[J]. Journal of Experimental Botany,2012,63(16):5903-5918.doi:10.1093/jxb/ers239. [34] Hewezi T,Howe P,Maier T R,Baum T J. Arabidopsis small RNAs and their targets during cyst nematode parasitism[J]. Molecular Plant-Microbe Interactions,2008,21(12):1622-1634.doi:10.1094/mpmi-21-12-1622. [35] Thiebaut F,Rojas C A,Almeida K L,Grativol C,Domiciano G C,Lamb C R C,Engler J D A,Hemerly A S,Ferreira P C G. Regulation of miR319 during cold stress in sugarcane[J]. Plant, Cell & Environment,2012,35(3):502-512.doi:10.1111/j.1365-3040.2011.02430.x. [36] Zhao W C,Li Z L,Fan J W,Hu C L,Yang R,Qi X,Chen H,Zhao F K,Wang S H. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J]. Journal of Experimental Botany,2015,66(15):4653-4667.doi:10.1093/jxb/erv238. [37] Mahajan S,Tuteja N. Cold,salinity and drought stresses:An overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.doi:10.1016/j.abb.2005.10.018. [38] 刘春浩,梁楠松,于磊,赵兴堂,刘颖,孙爽,王紫晴,詹亚光. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J].北京林业大学学报,2017,39(6):22-31.doi:10.13332/j.1000-1522.20160359. Liu C H,Liang N S,Yu L,Zhao X T,Liu Y,Sun S,Wang Z Q,Zhan Y G. Cloning,analysing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica[J]. Journal of Beijing Forestry University,2017,39(6):22-31. [39] Zhang S,Zhao Q C,Zeng D X,Xu J H,Zhou H G,Wang F L,Ma N,Li Y H. RhMYB108,an R2R3-MYB transcription factor,is involved in ethylene-and JA-induced petal senescence in rose plants[J]. Horticulture Research,2019,6:131.doi:10.1038/s41438-019-0221-8. [40] Wang N,Yang H Z,Yin Z Y,Liu W T,Sun L Y,Wu Y F. Phytoplasma effector SWP1 induces witches' broom symptom by destabilizing the TCP transcription factor BRANCHED1[J]. Molecular Plant Pathology,2018,19(12):2623-2634.doi:10.1111/mpp.12733. [41] Tiwari P,Indoliya Y,Chauhan A S,Pande V,Chakrabarty D. Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis[J]. Ecotoxicology and Environmental Safety,2020,206:11136.doi:10.1016/j.ecoenv.2020.111361. [42] Pecher P,Moro G,Canale M C,Capdevielle S,Singh A,MacLean A,Sugio A,Kuo C H,Lopes J R S,Hogenhout S A. Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize[J]. PLoS Pathogens,2019,15(9):e1008035.doi:10.1371/journal.ppat.1008035. [43] Leng B Y,Wang X,Yuan F,Zhang H N,Lu C X,Chen M,Wang B S. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis[J]. Plant Science:an International Journal of Experimental Plant Biology,2021,302:110704-110704.doi:10.1016/j.plantsci.2020.110704. [44] Capdevielle S,Pecher P,Moro G,Al-Subhi A,Mathers T C,Huang W,Al-Sadi A M,Hogenhout S A. Phytoplasma SAP11 effector homologs have evolved to differentially interact with plant TCP transcription factor subclasses[J]. Molecular Plant-Microbe Interactions,2019,32(10):3-3.doi:10.1371/journal.ppat.1008035. |