[1] 曹敏建. 耕作学[M].2版. 北京:中国农业出版社,2013. Cao J M. Farming science[M].2nd Edition. Beijing:China Agriculture Press,2013. [2] Chen S,Liu S W,Zheng X,Yin M,Chu G,Xu C M,Yan J X,Chen L P,Wang D Y,Zhang X F. Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy-upland systems in southeastern China[J]. The Crop Journal,2018,(6):576-588.doi:10.1016/j.cj.2018.07.007. [3] Zhao J,Yang Y D,Zhang K,Jeong J,Zeng Z H,Zang H D. Does crop rotation yield more in China? A meta-analysis[J]. Field Crops Research,2020,245:107659.doi:10.1016/j.fcr.2019.107659. [4] 姚兆磊,张继宗,杜玉琼,刘玉华,张立峰. 华北寒旱区作物轮作的生产效应[J].作物学报,2020,46(12):1923-1932.doi:10.3724/SP.J.1006.2020.04071. Yao Z L,Zhang J Z,Du Y Q,Liu Y H,Zhang L F. Productivity evaluation of crop rotation in cold and arid region of Northern China[J]. Acta Agronomica Sinica,2020,46(12):1923-1932. [5] Franke A C,van den Brand G J,Vanlauwe B,Giller K E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa:A review[J]. Agriculture, Ecosystems and Environment,2018,261:172-185.doi:10.1016/j.agee.2017.09.029. [6] 张伟,张冬梅,韩彦龙,刘化涛,赵聪,姜春霞,李娜娜. 不同前茬下旱地玉米的水分动态及产量效应[J].山西农业科学,2017,45(5):749-752,781. Zhang W,Zhang D M,Han Y L,Liu H T,Zhao C,Jiang C X,Li N N. Effects of different previous crops on soil moisture and crop yield of maize in dryland[J]. Journal of Shanxi Agricultural Sciences,2017,45(5):749-752,781. [7] Behnke G D,Zuber S M,Pittelkow C M,Nafziger E D,Villamil M B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois,USA[J]. Agriculture,Ecosystems and Environment,2018,261:62-70.doi:10.1016/j.agee.2018.03.007. [8] Herridge D F,Peoples M B,Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil,2008,311(1/2):1-18.doi:10.1007/s11104-008-9668-3. [9] Aschi A,Aubert M,Riah-Anglet W,N lieu S,Dubois C,Akpa-Vinceslas M,Trinsoutrot-Gattin I. Introduction of faba bean in crop rotation:Impacts on soil chemical and biological characteristics[J]. Applied Soil Ecology,2017,120:219-228.doi:10.1016/j.apsoil.2017.08.003. [10] Naab J B,Mahama G Y,Yahaya I,Prasad P V V. Conservation agriculture improves soil quality,crop yield,and incomes of smallholder farmers in north western Ghana[J]. Frontiers in Plant Science,2017,8:996.doi:10.3389/fpls.2017.00996. [11] Sainju U M,Lenssen A W,Allen B L,Stevens W B,Jabro J D. Nitrogen balance in response to dryland crop rotations and cultural practices[J]. Agriculture,Ecosystems and Environment,2016,233:25-32.doi:10.1016/j.agee.2016.08.023. [12] Koenning S R,Wrather J A. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009[J].Plant Health Progress,2010,11(1):5.doi:10.1094/PHP-2010-1122-01-RS. [13] 许艳丽,陈伊里,司兆胜,李兆林,李春杰,温广月. 不同茬口条件下的作物根渗出物对大豆胞囊线虫(Heterodera glycines)卵孵化影响[J].植物病理学报,2004,34(6):481-486.doi:10.3321/j.issn:0412-0914.2004.06.001. Xu Y L,Chen Y L,Si Z S,Li Z L,Li C J,Wen G Y. The effects of the root diffusate of different crops from different rotation systems on the egg hatch of soybean cyst nematode Heterodera glycines[J]. Acta Phytopathologica Sinica,2004,34(6):481-486. [14] Neher D A,Nishanthan T,Grabau Z J,Chen S Y. Crop rotation and tillage affect nematode communities more than biocides in monoculture soybean[J]. Applied Soil Ecology,2019,140:89-97.doi:10.1016/j.apsoil.2019.03.016. [15] Yang X X,Huang X Q,Wu W X,Xiang Y J,Du L,Zhang L,Liu Y. Effects of different rotation patterns on the occurrence of clubroot disease and disease and diversity of rhizosphere microbes[J]. Journal of Integrative Agriculture,2020,19(9):2265-2273.doi:10.1016/S2095-3119(20)63186-0. [16] 许艳丽,李兆林,李春杰. 小麦连作、迎茬和轮作对麦田杂草群落的影响[J].植物保护,2004,30(3):26-29.doi:10.3969/j.issn.0529-1542.2004.03.007. Xu Y L,Li Z L,Li C J. Effects of wheat rotation and monocropping system on weed populations in wheat fields[J]. Plant Protection,2004,30(3):26-29. [17] Shahzad M,Farooq M,Jabran K,Hussain M. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat[J]. Crop Protection,2016,89:161-169.doi:10.1016/j.cropro.2016.07.019. [18] 乔月静,刘琪,曾昭海,胡跃高,高志强. 轮作方式对甘薯根际土壤线虫群落结构及甘薯产量的影响[J].中国生态农业学报,2019,27(1):20-29.doi:10.13930/j.cnki.cjea.180524. Qiao Y J,Liu Q,Zeng Z H,Hu Y G,Gao Z Q. Effect of rotation on nematode community diversity in rhizosphere soils and yield of sweet potato[J]. Chinese Journal of Eco-Agriculture,2019,27(1):20-29. [19] Bennett A J,Bending G D,Chandler D,Hilton S,Mills P. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations[J]. Biological Reviews,2012,87(1):52-71.doi:10.1111/j.1469-185X.2011.00184.x. [20] Rosenzweig S T,Stromberger M E,Schipanski M E. Intensified dryland crop rotations support greater grain production with fewer inputs[J]. Agriculture,Ecosystems and Environment,2018,264:63-72.doi:10.1016/j.agee.2018.05.017. [21] Huang M B,Shao M A,Zhang L,Li Y S.Water use efficiency and sustainability of different long-term crop rotation systems in the Loess Plateau of China[J]. Soil and Tillage Research,2003,72(1):95-104.doi:10.1016/S0167-1987(03)00065-5. [22] Yang X L,Chen Y Q,Pacenka S,Gao W S,Ma L,Wang G Y,Yan P,Sui P,Steenhuis T S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain[J]. Journal of Hydrology,2015,522:428-438.doi:10.1016/j.jhydrol.2015.01.010. [23] 胡立峰,张继宗,张立峰. 河北省典型缺水区适水型种植制度改革的讨论[J].干旱地区农业研究,2019,37(6):132-137.doi:10.7606/j.issn.1000-7601.2019.06.19. Hu L F,Zhang J Z,Zhang L F. Discussion on the reform strategy of cropping system based on water utilization in water shortage areas of Hebei province[J]. Agricultural Research in the Arid Areas,2019,37(6):132-137. [24] Meyer-Aurich A,Weersink A,Janovicek K,Deen B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada[J]. Agriculture,Ecosystems and Environment,2006,117(2-3):119-127.doi:10.1016/j.agee.2006.03.023. [25] Gan Y T,Liang C,Wang X Y,McConkey B. Lowering carbon footprint of durum wheat by diversifying cropping systems[J]. Field Crops Research,2011,122(3):199-206.doi:10.1016/j.fcr.2011.03.020. [26] Yang X L,Gao W S,Zhang M,Chen Y Q,Sui P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain[J]. Journal of Cleaner Production,2014,76:131-139.doi:10.1016/j.jclepro.2014.03.063. [27] Reckling M,Hecker J M,Bergkvist G,Watson C A,Zander P,Schläfke N,Stoddard F L,Eory V,Topp C F E,Maire J,Bachinger J. A cropping system assessment framework-Evaluating effects of introducing legumes into crop rotations[J]. European Journal of Agronomy,2016,76:186-197.doi:10.1016/j.eja.2015.11.005. [28] 姜雨林,陈中督,遆晋松,隋鹏,陈阜. 华北平原不同轮作模式固碳减排模拟研究[J].中国农业大学学报,2018,23(1):19-26.doi:10.11841/j.issn.1007-4333.2018.01.03. Jiang Y L,Chen Z D,Ti J S,Sui P,Chen F. Simulation of soil carbon storage and greenhouse gas emission under different rotation systems in the North China Plain[J]. Journal of China Agricultural University,2018,23(1):19-26. [29] Li F Q,Xue C,Qiu P F,Liu Y X,Shi J X,Shen B,Yang X M,Shen Q R. Soil aggregate size mediates the responses of microbial communities to crop rotation[J]. European Journal of Soil Biology,2018,88:48-56.doi:10.1016/j.ejsobi.2018.06.004. [30] Venter Z S,Jacobs K,Hawkins H J. The impact of crop rotation on soil microbial diversity:A meta-analysis[J]. Pedobiologia-Journal of Soil Ecology,2016,59(4):215-223.doi:10.1016/j.pedobi.2016.04.001. [31] D'Acunto L,Andrade J F,Poggio S L,Semmartin M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community[J]. Agriculture,Ecosystems and Environment,2018,257:159-164.doi:10.1016/j.agee.2018.02.011. [32] Lupwayi N Z,Larney F J,Blackshaw R E,Kanashiro D A,Pearson D C,Petri R M.Pyrosequencing reveals profiles of soil bacterial communities after 12 years of conservation management on irrigated crop rotations[J]. Applied Soil Ecology,2017,121:65-73.doi:10.1016/j.apsoil.2017.09.031. [33] Schipanski M E,Barbercheck M,Douglas M R,Finney D M,Haider K,Kaye J P,Kemanian A R,Mortensen D A,Ryan M R,Tooker J,White C. A framework for evaluating ecosystem services provided by cover crops in agroecosystems[J]. Agricultural Systems,2014,125:12-22.doi:10.1016/j.agsy.2013.11.004. [34] Adeux G,Cordeau S,Antichi D,Carlesi S,Mazzoncini M,Munier-Jolain N,Bàrberi P. Cover crops promote crop productivity but do not enhance weed management in tillage-based cropping systems[J]. European Journal of Agronomy,2021,123:126221.doi:10.1016/j.eja.2020.126221. [35] Nielsen D C,Lyon D J,Hergert G W,Higgins R K,Holman J D. Cover crop biomass production and water use in the Central Great Plains[J]. Agronomy Journal,2015,107:2047-2058.doi:10.2134/agronj15.0186. [36] Salazar O,Balboa L,Peralta K,Rossi M,Casanova M,Tapia Y,Singh R,Quemada M. Effect of cover crops,on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile[J]. Agricultural Water Management,2019,212:399-406.doi:10.1016/j.agwat.2018.07.031. [37] Constantin J,Mary B,Laurent F,Aubrion G,Fontaine A,Kerveillant P,Beaudoin N. Effects of catch crops,no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments[J]. Agriculture,Ecosystems and Environment,2010,135(4):268-278.doi:10.1016/j.agee.2009.10.005. [38] Tosti G,Benincasa P,Farneselli M,Tei F,Guiducci M. Barley-hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk[J]. European Journal of Agronomy,2014,54:34-39.doi:10.1016/j.eja.2013.11.12. [39] Otto R,Pereira G L,Tenelli S,de Carvalho J L N,Lavres J,Castro S A Q,Lisboa I P,de Sermarini R A. Planting legume cover crop as a strategy to replace synthetic N fertilizer applied for sugarcane production[J]. Industrial Crops and Products,2020,156:112853.doi:10.1016/j.indcrop.2020.112853. [40] Thorup-Kristensen K,Dresbøll D B. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop[J]. Soil Use and Management,2010,26:27-35.10.1111/j.1475-2743.2009.00255.x. [41] Wulanningtyas H S,Gong Y T,Li P R,Sakagami N,Nishiwaki J,Komatsuzaki M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation[J]. Soil & Tillage Research,2021,205:104749.doi:10.1016/j.still.2020.104749. [42] Cui J X,Sui P,Wright D L,Wang D,Sun B B,Ran M M,Shen Y W,Li C,Chen Y Q. Carbon emission of maize-based cropping systems in the North China Plain[J]. Journal of Cleaner Production, 2019,213:300-308.doi:10.1016/j.jclepro.2018.12.174. [43] Smith W N,Grant B B,Campbell C A,McConkey B G,Desjardins R L,Kröbel R,Malhi S S. Crop residue removal effects on soil carbon:measured and inter-model comparisons[J]. Agriculture,Ecosystems & Environment,2012,161:27-38.doi:10.1016/j.agee.2012.07.024. [44] Rochette P,Eriksen-Hamel N S. Chamber measurements of soil nitrous oxide flux:Are absolute values reliable?[J]. Soil Science Society of America Journal,2008,72(2):331-342.doi:10.2136/sssaj2007.0215. [45] Glenn A J,Amiro B D,Tenuta M,Stewart S E,Wagner-Riddle C. Carbon dioxide exchange in a northern Prairie cropping system over three years[J]. Agricultural and Forest Meteorology, 2010,150(7-8):908-918.doi:10.1016/j.agrformet.2010.02.010. [46] Maas S E,Glenn A J,Tenuta M,Amiro B D. Net CO2 and N2O exchange during perennial forage establishment in an annual crop rotation in the Red River Valley,Manitoba[J]. Canadian Journal Soil Science,2013,93:639-652.doi:10.4141/cjss2013-025. [47] Wagner-Riddle C,Furon A,McLaughlin N L,Lee I,Barbeau J,Jayasundara S,Parkin G,Von Bertoldi P,Warland J. Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years[J]. Global Change Biology,2007,13(8):1722-1736.doi:10.1111/j.1365-2486.2007.01388.x. [48] 夏文建,王淳,张丽芳,张文学,冀建华,陈金,刘增兵,刘光荣. 基于DNDC模型的双季稻体系氨挥发损失研究[J].长江流域资源与环境,2020,29(9):2035-2046.doi:10.11870/cjlyzyyhj202009014. Xia W J,Wang C,Zhang L F,Zhang W X,Ji J H,Chen J,Liu Z B,Liu G R. Suitability of DNDC model to simulate ammonia volatilization for double rice cropping system[J]. Resources and Environment in the Yangtze Basin,2020,29(9):2035-2046. [49] Uzoma K C,Smith W,Grant B,Desjardins R L,Gao X P,Hanis K,Tenuta M,Goglio P,Li C S. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model[J]. Agriculture Ecosystems Environment, 2015,206:71-83.doi:10.1016/j.agee.2015.03.014. [50] Goglio P,Smith W N,Grant B B,Desjardins R L,McConkey B G,Campbell C A,Nemecek T. Accounting for soil carbon changes in agricultural life cycle assessment(LCA):A review[J]. Journal of Cleaner Production,2015,104:23-39.doi:10.1016/j.jclepro.2015.05.040. [51] VandenBygaart A J,McConkey B G,Angers D A,Smith W,de Gooijer H,Bentham M,Martin T. Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory[J]. Canadian Journal of Soil Science,2008,88(5):671-680.doi:10.4141/CJSS07015. [52] Goglio P,Smith W N,Grant B B,Desjardins R L,Gao X,Hanis K,Tenuta M,Campbell C A,McConkey B G,Nemecek T,Burgess P J,Williams A G. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA[J]. Journal of Cleaner Production,2018,172:4010-4017.doi:10.1016/j.jclepro.2017.03.133. [53] Jin X X,Zuo Q,Ma W W,Li S,Shi J C,Tao Y Y,Zhang Y N,Liu Y,Liu X F,Lin S,Ben-Gal A.Water consumption and water-saving characteristics of a ground cover rice production system[J]. Journal of Hydrology,2016,540:220-231.doi:10.1016/j.jhydrol.2016.06.018. [54] Arcand M M,Knight J D,Farrell R E. Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola[J]. Biology and Fertility of Soils,2014,50(4):563-570.doi:10.1007/s00374-013-0877-4. [55] Lenka N K,Lenka S,Mahapatra P,Sharma N,Kumar S,Aher S B,Yashona D S. The fate of 15N labeled urea in a soybean-wheat cropping sequence under elevated CO2 and/or temperature[J]. Agriculture,Ecosystems and Environment, 2019,282:23-29.doi:10.1016/j.agee.2019.04.033. [56] Zhang K,Zhao J,Wang X Q,Xu H S,Zang H D,Liu J N,Hu Y G,Zeng Z H. Estimates on nitrogen uptake in the subsequent wheat by above-ground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain[J]. Journal of Integrative Agriculture,2019,18(3):571-579.doi:10.1016/S2095-3119(18)62112-4. [57] Taveira C J,Farrell R E,Wagner-Riddle C,Machado P V F,Deen B,Congreves K A. Tracing crop residue N into subsequent crops:Insight from long-term crop rotations that vary in diversity[J]. Field Crops Research,2020,255:107904.doi:10.1016/j.fcr.2020.107904. [58] Liu K,Blackshaw R E,Johnson E N,Hossain Z,Hamel C,St-Arnaud M,Gan Y T. Lentil enhances the productivity and stability of oilseed-cereal cropping systems across different environments[J]. European Journal of Agronomy,2019,105:24-31.doi:10.1016/j.eja.2019.02.005. [59] Liu K,Bandara M,Hamel C,Knight J D,Gan Y T. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments[J]. Field Crops Research,2020,248:107657.doi:10.1016/j.fcr.2019.107657. |