[1] Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. Comparative metabolic responses and adaptive strategies of wheat(Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15:170.doi:10.1186/s12870-015-0546-x. [2] 倪秀珍, 张强. 抗盐植物研究进展[J]. 特产研究, 2004, 26(4):58-62.doi:10.3969/j.issn.1001-4721.2004.04.019. Ni X Z, Zhang Q. The research progress on the salt-and-alkali-resistance-plant[J]. Special Wild Economic Animal and Plant Research, 2004, 26(4):58-62. [3] 张佳环, 王贺, 金哲宇, 高明瑞, 杨福, 李景鹏, 张治安. 苏打盐碱地水稻秆腐菌核病危害特征及其防治关键技术[J]. 吉林农业大学学报, 2020:1-7.doi:10.13327/j.jjlau.2020.5256. Zhang J H, Wang H, Jin Z Y, Gao M R, Yang F, Li J P, Zhang Z A. Effects of sclerotiniose blight of rice stem rot on 1000-grain weight and chalkiness rate of rice in soda saline-alkali soil and the control effect of silicon fertilizer on the disease[J]. Journal of Jilin Agricultural University, 2020:1-7. [4] Mahajan S, Pandey G K, Tuteja N. Calcium-and salt-stress signaling in plants:Shedding light on SOS pathway[J]. Archives of Biochemistry and Biophysics, 2008, 471(2):146-158.doi:10.1016/j.abb.2008.01.010. [5] 闫永庆, 王文杰, 朱虹, 刘兴亮, 石溪婵, 祖元刚. 盐碱胁迫对青山杨光合特性的影响[J]. 东北农业大学学报, 2010, 41(2):31-38.doi:10.3969/j.issn.1005-9369.2010.02.007. Yan Y Q, Wang W J, Zhu H, Liu X L, Shi X C, Zu Y G. Effect of saline-alkali stress on photosynthetic characteristics of Qingshan poplar[J]. Journal of Northeast Agricultural University, 2010, 41(2):31-38. [6] Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of Citrus plants to salinity[J]. The Plant Journal, 2009, 60(5):795-804.doi:10.1111/j.1365-313x.2009.04000.x. [7] 黎大爵.首届全国甜高粱会议论文摘要及培训班讲义[M].北京:科学出版社, 1995:190. Li D J. The first national sweet sorghum conference paper abstract and training class handout[M].Beijing:Science Press, 1995:190. [8] Den Herder G, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution[J]. Trends in Plant Science, 2010, 15(11):600-607.doi:10.1016/j.tplants.2010.08.009. [9] Larson J E, Funk J L. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms[J]. The New Phytologist, 2016, 210(3):827-838.doi:10.1111/nph.13829. [10] Citovsky V, DE Vos G, Zambryski P. Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens[J]. Science, 1988, 240(4851):501-504.doi:10.1126/science.240.4851.501. [11] Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L. Import of Agrobacterium T-DNA into plant nuclei:Two distinct functions of VirD2 and VirE2 proteins[J]. The Plant Cell, 2001, 13(2):369-383.doi:10.1105/tpc.13.2.369. [12] Li J X, Krichevsky A, Vaidya M, Tzfira T, Citovsky V. Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(16):5733-5738.doi:10.1073/pnas.0404118102. [13] Dingwall C, Laskey R A. Nuclear targeting sequences-a consensus?[J]. Trends in Biochemical Sciences, 1991, 16(12):478-481.doi:10.1016/0968-0004(91) 90184-w. [14] Tsugama D, Liu S K, Fujino K, Takano T. Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in Arabidopsis thaliana[J]. Annals of Botany, 2018, 122(7):1219-1229.doi:10.1093/aob/mcy125. [15] Takeo K, Ito T. Subcellular localization of VIP1 is regulated by phosphorylation and 14-3-3 proteins[J]. FEBS Letters, 2017, 591(13):1972-1981.doi:10.1002/1873-3468.12686. [16] Yoon H S, Fujino K, Liu S K, Takano T, Tsugama D. VIP1, a bZIP protein, interacts with the catalytic subunit of protein phosphatase 2A in Arabidopsis thaliana[J]. Plant Signaling & Behavior, 2020, 15(2):1706026.doi:10.1080/15592324.2019.1706026. [17] Tzfira T, Rhee Y, Chen M H, Kunik T, Citovsky V. Nucleic acid transport in plant-microbe interactions:The molecules that walk through the walls[J]. Annual Review of Microbiology, 2000, 54:187-219.doi:10.1146/annurev.micro.54.1.187. [18] Wu Y, Zhao Q, Gao L, Yu X M, Fang P, Oliver D J, Xiang C B. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(12):3407-3422.doi:10.1093/jxb/erq161. [19] Chen J, Yi Q, Cao Y, Wei B, Zheng L J, Xiao Q L, Xie Y, Gu Y, Li Y P, Huang H H, Wang Y B, Hou X B, Long T D, Zhang J J, Liu H M, Liu Y H, Yu G W, Huang Y B. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters[J]. Journal of Experimental Botany, 2016, 67(5):1327-1338.doi:10.1093/jxb/erv527. [20] Tsugama D, Liu S, Takano T. Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana[J]. PLoS One, 2014, 9(8):e103930.doi:10.1371/journal.pone.0103930. [21] Tsugama D, Liu S K, Takano T. The bZIP protein VIP1 is involved in touch responses in Arabidopsis roots[J]. Plant Physiology, 2016, 171(2):1355-1365.doi:10.1104/pp.16.00256. [22] 高俊凤. 植物生理学实验指导[M].北京:高等教育出版社, 2006. Gao J F. Experimental guidance for plant physiology[M].Beijing:Higher Education Press, 2006. [23] Bistgani Z E, Hashemi M, Dacosta M, Craker L, Maggi F, Morshedloo M R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak[J]. Industrial Crops and Products, 2019, 135:311-320.doi:10.1016/j.indcrop.2019.04.055. [24] Muchate N S, Nikalje G C, Rajurkar N S, Suprasanna P, Nikam T D. Plant salt stress:Adaptive responses, tolerance mechanism and bioengineering for salt tolerance[J]. The Botanical Review, 2016, 82(4):371-406.doi:10.1007/s12229-016-9173-y. [25] Galvan-Ampudia C S, Julkowska M M, Darwish E, Gandullo J, Korver R A, Brunoud G, Haring M A, Munnik T, Vernoux T, Testerink C. Halotropism is a response of plant roots to avoid a saline environment[J]. Current Biology, 2013, 23(20):2044-2050.doi:10.1016/j.cub.2013.08.042. [26] Robbins N E, Trontin C, Duan L N, Dinneny J R. Beyond the barrier:Communication in the root through the endodermis[J]. Plant Physiology, 2014, 166(2):551-559.doi:10.1104/pp.114.244871. [27] 盛彦敏, 石德成, 尚洪兴, 许月. 不同程度中碱性复合盐对向日葵生长的影响[J]. 东北师大学报(自然科学版), 1999(4):65-69. Sheng Y M, Shi D C, Shang H X, Xu Y. The effect on growth of sunflower to mixed salts with various natural and alkaline[J]. Journal of Northeast Normal University (Natural Science Edition), 1999(4):65-69. [28] Lapham R, Lee L Y, Tsugama D, Lee S, Mengiste T, Gelvin S B. VIP1 and its homologs are not required for Agrobacterium-mediated transformation, but play a role in botrytis and salt stress responses[J]. Frontiers in Plant Science, 2018, 9:749.doi:10.3389/fpls.2018.00749. [29] 仪泽会, 毛丽萍, 赵婧. 嫁接对复合盐碱胁迫下青椒幼苗生长、抗氧化能力及渗透调节能力的影响[J]. 植物生理学报, 2020, 56(9):1943-1954.doi:10.13592/j.cnki.ppj.2019.0604. Yi Z H, Mao L P, Zhao J. Effects of grafting on growth, antioxidant capacity and osmotic adjustment capacity of green pepper seedlings under mixed salt-alkali stress[J]. Plant Physiology Journal, 2020, 56(9):1943-1954. [30] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1):1-22.doi:10.1007/s11120-013-9813-6. [31] Zhang H H, Li X, Guan Y P, Li M B, Wang Y, An M J, Zhang Y H, Liu G J, Xu N, Sun G Y. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry(Morus alba L.) seedling leaves to NaCl and NaHCO3 stress[J]. Ecotoxicology and Environmental Safety, 2020, 193:110259.doi:10.1016/j.ecoenv.2020.110259. [32] 刘铎, 丛日春, 高卫东, 党宏忠, 李庆梅, 刘德玺, 杨庆山. 盐碱胁迫对柳树抗氧化酶的影响[J]. 水土保持通报, 2017, 37(5):53-57.doi:10.13961/j.cnki.stbctb.2017.05.009. Liu D, Cong R C, Gao W D, Dang H Z, Li Q M, Liu D X, Yang Q S. Effects of salt and alkali stresses on antioxidases of willow[J]. Bulletin of Soil and Water Conservation, 2017, 37(5):53-57. [33] 刘萍, 王彦, 程丽君, 秦瑞鑫. 盐碱胁迫对合欢种子萌发及酶活性影响[J]. 滨州学院学报, 2018, 34(2):51-55.doi:10.13486/j.cnki.1673-2618.2018.02.009. Liu P, Wang Y, Cheng L J, Qin R X. Effect of saline-alkali stress on seed germination and enzyme activity of Albizzia julibrissin durazz[J]. Journal of Binzhou University, 2018, 34(2):51-55. [34] 李晓雅, 赵翠珠, 程小军, 贾庆利, 李长圣, 刘明喆, Lu Chaofu, 张猛. 盐胁迫对亚麻荠幼苗生理生化指标的影响[J]. 西北农业学报, 2015, 24(4):76-83.doi:10.7606/j.issn.1004-1389.2015.04.013. Li X Y, Zhao C Z, Cheng X J, Jia Q L, Li C S, Liu M Z, Lu C F, Zhang M. Effects of salt stress on physiological and biochemical indexes of Camelina sativa seedlings[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(4):76-83. [35] 张贝贝.甜瓜对盐碱胁迫的形态学与生理生化响应和转录组分析[D].福州:福建农林大学, 2019. Zhang B B. Response of melon to Saline-alkali stress at morphological, physiological, biochemical and transcriptome levels[D].Fuzhou:Fujian Agriculture and Forestry University, 2019. |