[18] |
|
|
Cheng B, Li L, Wang L J, Zhang H P. The research progress of MEF2 gene family[J]. Chinese Journal of Animal Science, 2012, 48(15):70-74.
|
[19] |
Juszczuk-Kubiak E, Starzyński R R, Sakowski T, Wicińska K, Flisikowski K. Effects of new polymorphisms in the bovine myocyte enhancer factor 2D( MEF2D)gene on the expression rates of the longissimus dorsi muscle[J]. Molecular Biology Reports, 2012, 39(8):8387-8393.doi: 10.1007/s11033-012-1689-6.
|
[20] |
Xia T, Zhang H H, Zhang L, Yang X F, Sun G L, Chen J, Xu D J, Zhao C. Comparative and evolutionary analysis of the reptilian hedgehog gene family[J]. Peer J, 2019, 7:e7613.doi: 10.7717/peerj.7613.
URL
|
[21] |
Zhang S T, Zhang M M, Cai F, Song W H. Biological function of presenilin and its role in AD pathogenesis[J]. Translational Neurodegeneration, 2013, 2(1):1-13.doi: 10.1186/2047-9158-2-15.
|
[22] |
URL
|
[23] |
Popp G M, Graebert K S, Pietrzik C U, Rosentreter S M, Lemansky P, Herzog V. Growth regulation of rat thyrocytes(FRTL-5 cells)by the secreted ectodomain of beta-amyloid precursor-like proteins[J]. Endocrinology, 1996, 137(5):1975-1983.doi: 10.1210/endo.137.5.8612538.
|
[24] |
Zhang Z H, Hartmann H, Do V M, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Sommer B, van de Wetering M, Clevers H, Saftig P, De Strooper B, He X, Yankner B A. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis[J]. Nature, 1998, 395(6703):698-702.doi: 10.1038/27208.
URL
|
[25] |
Dehvari N, Cedazo-Minguez A, Isacsson O, Nilsson T, Winblad B, Karlström H, Benedikz E, Cowburn R F. Presenilin dependence of phospholipase C and protein kinase C signaling[J]. Journal of Neurochemistry, 2007, 102(3):848-857.doi: 10.1111/j.1471-4159.2007.04571.x.
|
[26] |
Bagaria J, Bagyinszky E, An S S A. Genetics,functions,and clinical impact of presenilin-1( PSEN1)gene[J]. International Journal of Molecular Sciences, 2022, 23(18):10970.doi: 10.3390/ijms231810970.
|
[27] |
Tao J N, Chen S, Lee B. Alteration of Notch signaling in skeletal development and disease[J]. Annals of the New York Academy of Sciences, 2010, 1192(1):257-268.doi: 10.1111/j.1749-6632.2009.05307.x.
|
[28] |
Saha M, Mitsuhashi S, Jones M D, Manko K, Reddy H M, Bruels C C, Cho K A, Pacak C A, Draper I, Kang P B. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions[J]. Human Molecular Genetics, 2017, 26(15):2984-3000.doi: 10.1093/hmg/ddx189.
pmid: 28498977
|
[29] |
Igata T, Tanaka H, Etoh K, Hong S, Tani N, Koga T, Nakao M. Loss of the transcription repressor ZHX3 induces senescence-associated gene expression and mitochondrial-nucleolar activation[J]. PLoS One, 2022, 17(1):e0262488.doi: 10.1371/journal.pone.0262488.
URL
|
[30] |
Alharby E, Albalawi A M, Nasir A, Alhijji S A, Mahmood A, Ramzan K, Abdusamad F, Aljohani A, Abdelsalam O, Eldardear A, Basit S. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia[J]. Clinical Genetics, 2017, 92(6):579-586.doi: 10.1111/cge.13051.
pmid: 28542722
|
[1] |
|
|
Chen L H, Li J, Wang Y H. Existing problems analysis and strategy for the development of beef cattle industry in China[J]. Food and Nutrition in China, 2022, 28(3):5-9.
|
[2] |
|
|
Hou Y. Growth and development law of beef cattle and feeding management measures[J]. Modern Animal Husbandry Science & Technology, 2016(9):33.
|
[3] |
|
|
Feng X F, Feng Y, Zhang J, Wang Y, Hong L, Wu L, Gu Y L, Jiang Q F. Genetic parameter estimation for body measurements and mass of augus cattle in Ningxia[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5):686-691.
|
[4] |
冯小芳, 蒋秋斐, 封元, 王瑜, 陈亚飞, 母童, 黎明, 周子航, 蔡正云, 张娟, 顾亚玲. 安格斯牛体重和体尺性状生长曲线拟合与相关性分析[J]. 浙江农业学报, 2022, 34(1):50-59.doi: 10.3969/j.issn.1004-1524.2022.01.07.
|
|
Feng X F, Jiang Q F, Feng Y, Wang Y, Chen Y F, Mu T, Li M, Zhou Z H, Cai Z Y, Zhang J, Gu Y L. Growth curve fitting and correlation analysis of body weight and body measurements in Angus cattle[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1):50-59
doi: 10.3969/j.issn.1004-1524.2022.01.07
|
[31] |
Zhou S P. Paxbp1 controls a key checkpoint for cell growth and survival during early activation of quiescent muscle satellite cells[D]. Hong Kong: The University of Science and Technology Library, 2021.doi: 10.14711/thesis-991012980424003412.
|
[32] |
Rudolf A, Schirwis E, Giordani L, Parisi A, Lepper C, Taketo M M, Le Grand F. β-catenin activation in muscle progenitor cells regulates tissue repair[J]. Cell Reports, 2016, 15(6):1277-1290.doi: 10.1016/j.celrep.2016.04.022.
|
[33] |
Shao J, Zhou Y H, Xiao Y. The regulatory roles of Notch in osteocyte differentiation via the crosstalk with canonical Wnt pathways during the transition of osteoblasts to osteocytes[J]. Bone, 2018, 108:165-178.doi: 10.1016/j.bone.2018.01.010.
pmid: 29331299
|
[34] |
|
|
Xu Q Y, Wang F, Zhang Q B, Zhou Y. The role of myogenic regulatory factors in muscle development,occurrence and regeneration[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2021, 43(6):571-576.
|
[35] |
Zhang Z T, Xu F, Zhang Y N, Li W, Yin Y H, Zhu C Y, Du L X, Elsayed A K, Li B C. Cloning and expression of MyoG gene from Hu sheep and identification of its myogenic specificity[J]. Molecular Biology Reports, 2014, 41(2):1003-1013.doi: 10.1007/s11033-013-2945-0.
URL
|
[36] |
|
|
Wang X, Bai J Y, Yang S, Chu M, Wang H L, Tang Y L. Research progress of myopoietin(MyoG)gene in livestock[J]. Anhui Agricultural Science Bulletin, 2016, 22(20):76-77,96.
|
[5] |
陶林, 贺小云, 狄冉, 刘秋月, 胡文萍, 王翔宇, 储明星. 畜禽生长发育相关性状的全基因组关联分析研究进展[J]. 中国畜牧杂志, 2019, 55(11):34-41.doi: 10.19556/j.0258-7033.20190218-04.
|
|
Tao L, He X Y, Di R, Liu Q Y, Hu W P, Wang X Y, Chu M X. Research progress on genome-wide association study for growth-related traits in livestock and poultry[J]. Chinese Journal of Animal Science, 2019, 55(11):34-41.
|
[6] |
|
|
Chen F Y, Niu H, Shi Q T, Hua L S, Feng Y J, Xu Z X, Wang E Y. Genome-wide association analysis on growth traits of Jiaxian red cattle[J]. China Cattle Science, 2018, 44(5):24-28.
|
[7] |
Zhang W G, Li J Y, Guo Y, Zhang L P, Xu L Y, Gao X, Zhu B, Gao H J, Ni H M, Chen Y. Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle[J]. Scientific Reports, 2016, 6:38073.doi: 10.1038/srep38073.
pmid: 27892541
|
[8] |
|
|
Shen J F. GWAS study on body appearance and blood physiological and biochemical traits of Yunling cattle[D]. Yangling: Northwest A&F University, 2022.
|
[9] |
Schipilow J D, MacDonald H M, Liphardt A M, Kan M, Boyd S K. Bone micro-architecture,estimated bone strength,and the muscle-bone interaction in elite athletes:an HR-pQCT study[J]. Bone, 2013, 56(2):281-289.doi: 10.1016/j.bone.2013.06.014.
|
[10] |
Guo B S, Zhang Z K, Liang C, Li J, Liu J, Lu A P, Zhang B T, Zhang G. Molecular communication from skeletal muscle to bone:a review for muscle-derived myokines regulating bone metabolism[J]. Calcified Tissue International, 2017, 100(2):184-192.doi: 10.1007/s00223-016-0209-4.
URL
|
[11] |
Kirk B, Duque G. Muscle and bone:An indissoluble union[J]. Journal of Bone and Mineral Research, 2022, 37(7):1211-1212.doi: 10.1002/jbmr.4626.
URL
|
[12] |
Liu P, Ping Y L, Ma M, Zhang D M, Liu C, Zaidi S, Gao S, Ji Y T, Lou F, Yu F Y, Lu P, Stachnik A, Bai M R, Wei C G, Zhang L R, Wang K, Chen R, New M I, Rowe D W, Yuen T, Sun L, Zaidi M. Anabolic actions of Notch on mature bone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): E2152-E2161.doi: 10.1073/pnas.1603399113.
|
[13] |
Slaninova V, Krafcikova M, Perez-Gomez R, Steffal P, Trantirek L, Bray S J, Krejci A. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle[J]. Open Biology, 2016, 6(2):150155.doi: 10.1098/rsob.150155.
URL
|
[37] |
Hernández-Hernández J M, García-González E G, Brun C E, Rudnicki M A. The myogenic regulatory factors,determinants of muscle development,cell identity and regeneration[J]. Seminars in Cell & Developmental Biology, 2017, 72:10-18.doi: 10.1016/j.semcdb.2017.11.010.
|
[38] |
McClure M J, Ramey A N, Rashid M, Boyan B D, Schwartz Z. Integrin-α7 signaling regulates connexin 43,M-cadherin,and myoblast fusion[J]. American Journal of Physiology-Cell Physiology, 2019, 316(6):C876-C887.doi: 10.1152/ajpcell.00282.2018.
URL
|
[39] |
Taylor M V, Hughes S M. Mef2 and the skeletal muscle differentiation program[J]. Seminars in Cell & Developmental Biology, 2017, 72:33-44.doi: 10.1016/j.semcdb.2017.11.020.
|
[40] |
Black B L, Olson E N. Transcriptional control of muscle development by myocyte enhancer factor-2(mef2)proteins[J]. Annual Review of Cell and Developmental Biology, 1998, 14:167-196.doi: 10.1146/annurev.cellbio.14.1.167.
pmid: 9891782
|
[41] |
Wang C, Liu Y, Zhang Y T, Yang Y Z, Wang X Z, Li G Q, Wang H Y, Gong S M, Song J W, Chen S F, He D Q. Expression profile and the G63A mutation of IGF2 gene associated with growth traits in Zhedong-white goose[J]. Animal Biotechnology, 2022:1-6.doi: 10.1080/10495398.2022.2113399.
|
[42] |
Sélénou C, Brioude F, Giabicani E, Sobrier M L, Netchine I. IGF2:Development,genetic and epigenetic abnormalities[J]. Cells, 2022, 11(12):1886.doi: 10.3390/cells11121886.
|
[14] |
Girardi F, Le Grand F. Wnt signaling in skeletal muscle development and regeneration[J]. Progress in Molecular Biology and Translational Science, 2018, 153:157-179.doi: 10.1016/bs.pmbts.2017.11.026.
pmid: 29389515
|
[15] |
|
|
Zhang Z M, Jin C L, Yan H C, Wang X Q. Regulatory mechanism of Wnt signaling in skeletal muscle growth,development and regeneration[J]. Chinese Journal of Animal Nutrition, 2019, 31(2):560-566.
|
[16] |
|
|
Song L J, Xu H Q, Li Y, Sun J K. Construction of IGF1 gene interference vector in Guanling cattle(Bos taurus)and its effect on myogenic cells[J]. Journal of Agricultural Biotechnology, 2022, 30(5):896-907.
|
[17] |
Lai Z Y, Wu F, Li M, Bai F X, Gao Y, Yu J, Li H J, Lei C Z, Dang R H. Tissue expression profile,polymorphism of IGF1 gene and its effect on body size traits of Dezhou donkey[J]. Gene, 2021, 766:145118.doi: 10.1016/j.gene.2020.145118.
URL
|