[1] |
惠富平, 邵文挥, 孙雁冰. 湖羊繁育史及其当代保种考述[J]. 畜牧与兽医, 2022, 54(12):141-145.
|
|
Hui F P, Shao W H, Sun Y B. Breeding history of Hu sheep and its contemporary breed conservation[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(12):141-145.
|
[2] |
孙义铭, 王文杰, 魏慧情, 陈瑶, 张孝安, 赵梦宇, 张子军, 任春环, 王冠军, 黄桠锋. 饲养模式对绵羊生长性能、屠宰性能以及瘤胃发酵的影响研究进展[J]. 中国畜牧杂志, 2024, 60(9):84-90.doi: 10.19556/j.0258-7033.20231012-09.
|
|
Sun Y M, Wang W J, Wei H Q, Chen Y, Zhang X A, Zhao M Y, Zhang Z J, Ren C H, Wang G J, Huang Y F. Research progress on the effects of feeding modes on growth performance,slaughter performance,and rumen fermentation of sheep[J]. Chinese Journal of Animal Science, 2024, 60(9):84-90.
|
[3] |
|
|
Zhang L C. Research on the current situation of import trade and consumption of beef and mutton in China[D]. Urumqi: Xinjiang Agricultural University, 2023.
|
[4] |
Sari C I, Eikelis N, Head G A, Schlaich M, Meikle P, Lambert G, Lambert E. Android fat deposition and its association with cardiovascular risk factors in overweight young males[J]. Frontiers in Physiology, 2019, 10:1162.doi: 10.3389/fphys.2019.01162.
pmid: 31620011
|
[5] |
|
|
Li J, Jin H. General situation,future development trend and suggestions of mutton sheep industry in China in 2023[J]. Chinese Journal of Animal Science, 2024, 60(3):322-328.
|
[6] |
Zhang X Y, Liu C Y, Kong Y Y, Li F D, Yue X P. Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep[J]. Frontiers in Nutrition, 2022, 9:908355.doi: 10.3389/fnut.2022.908355.
|
[7] |
Schumacher M, DelCurto-Wyffels H, Thomson J, Boles J. Fat deposition and fat effects on meat quality-a review[J]. Animals, 2022, 12(12):1550.doi: 10.3390/ani12121550.
|
[8] |
Zeng X W, Wang W M, Zhang D Y, Li X L, Zhang Y K, Zhao Y, Zhao L M, Wang J H, Xu D, Cheng J B, Li W X, Zhou B B, Lin C C, Yang X B, Zhai R, Ma Z W, Liu J, Cui P P, Weng X X, Wu W W, Zhang X X, Zheng W X. Polymorphism and expression level of the FADS3 gene and associated with the growth traits in Hu sheep[J]. Animal Biotechnology, 2023, 34(9):4793-4802.doi: 10.1080/10495398.2023.2196313.
|
[9] |
Tuersuntuoheti M, Zhang J H, Zhou W, Zhang C L, Liu C J, Chang Q Q, Liu S D. Exploring the growth trait molecular markers in two sheep breeds based on genome-wide association analysis[J]. PLoS One, 2023, 18(3):e0283383.doi: 10.1371/journal.pone.0283383.
|
[10] |
Zhang D Y, Zhang X X, Li F D, La Y F, Li G Z, Zhang Y K, Li X L, Zhao Y, Song Q Z, Wang W M. The association of polymorphisms in the ovine PPARGC1B and ZEB2 genes with body weight in Hu sheep[J]. Animal Biotechnology, 2022, 33(1):90-97.doi: 10.1080/10495398.2020.1775626.
|
[11] |
Kadereit B, Kumar P, Wang W J, Miranda D, Snapp E L, Severina N, Torregroza I, Evans T, Silver D L. Evolutionarily conserved gene family important for fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1):94-99.doi: 10.1073/pnas.0708579105.
pmid: 18160536
|
[12] |
|
|
Qin P Y. Study on the regulatory function and mechanism of FITM2 gene on fat metabolism in sheep[D]. Taigu: Shanxi Agricultural University, 2022.
|
[13] |
Wang G P, Chen A Q, Wu Y, Wang D L, Chang C F, Yu G Y. Fat storage-inducing transmembrane proteins:beyond mediating lipid droplet formation[J]. Cellular & Molecular Biology Letters, 2022, 27(1):98.doi: 10.1186/s11658-022-00391-z.
|
[14] |
Miranda D A, Koves T R, Gross D A, Chadt A, Al-Hasani H, Cline G W, Schwartz G J, Muoio D M, Silver D L. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2[J]. Journal of Biological Chemistry, 2011, 286(49):42188-42199.doi: 10.1074/jbc.M111.297127.
pmid: 22002063
|
[15] |
Bond L M, Ibrahim A, Lai Z W, Walzem R L, Bronson R T, Ilkayeva O R, Walther T C, Farese R V. Fitm2 is required for ER homeostasis and normal function of murine liver[J]. Journal of Biological Chemistry, 2023, 299(3):103022.doi: 10.1016/j.jbc.2023.103022.
|
[16] |
Moreira G C M, Boschiero C, Cesar A S M, Reecy J M, Godoy T F, Trevisoli P A, Cantão M E, Ledur M C, Ibelli A M G, Peixoto J O, Moura A S A M T, Garrick D, Coutinho L L. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens[J]. BMC Genomics, 2018, 19(1):374.doi: 10.1186/s12864-018-4779-6.
pmid: 29783939
|
[17] |
Gupta R K, Attie A D. Introduction to the thematic review series:adipose biology[J]. Journal of Lipid Research, 2019, 60(10):1646-1647.doi: 10.1194/jlr.IN119000337.
pmid: 31413067
|
[18] |
Cheng J B, Wang W M, Zhang D Y, Zhang Y K, Li X L, Zhao Y, Xu D, Zhao L M, Li W X, Wang J H, Zhou B B, Lin C C, Yang X B, Zhang X X. Identification of polymorphic loci in OSMR and GHR genes and analysis of their association with growth traits in sheep[J]. Animal Biotechnology, 2023, 34(7):2546-2553.doi: 10.1080/10495398.2022.2105227.
|
[19] |
孙国权, 高树新, 吴慧光, 李俊雅, 丽春, 王景山, 王玉泉, 王国富. 解偶联蛋白1、2和3基因在中国西门塔尔牛组织器官中的表达水平及其与胴体品质关系分析[J]. 华北农学报, 2014, 29(4):116-120.doi: 10.7668/hbnxb.2014.04.019.
|
|
Sun G Q, Gao S X, Wu H G, Li J Y, Li C, Wang J S, Wang Y Q, Wang G F. Analyze the ucp1,ucp2,ucp3 genes expression level in tissues/organs and the relationship with the carcass traits in Chinese Simmental cattle[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(4):116-120.
|
[20] |
Zhao H Y, Wu X F, Cai H F, Pan C Y, Lei C Z, Chen H, Lan X Y. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2( PITX2)gene in dairy goats[J]. Gene, 2013, 532(2):203-210.doi: 10.1016/j.gene.2013.09.062.
|
[21] |
孙胜祥, 张建明, 江小帆. 不同生长阶段湖羊体重与体尺指标相关性研究[J]. 山东畜牧兽医, 2024, 45(4):4-6.
|
|
Sun S X, Zhang J M, Jiang X F. Study on the correlation between body weight and body size of Hu sheep at different growth stages[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2024, 45(4):4-6.
|
[22] |
Abousoliman I, Reyer H, Oster M, Murani E, Mohamed I, Wimmers K. Genome-wide analysis for early growth-related traits of the locally adapted Egyptian barki sheep[J]. Genes, 2021, 12(8):1243.doi: 10.3390/genes12081243.
|
[23] |
Murawska-Ciałowicz E. Adipose tissue-morphological and biochemical characteristic of different depots[J]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2017, 71(1):466-484.doi: 10.5604/01.3001.0010.3829.
|
[24] |
Gross D A, Snapp E L, Silver D L. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2[J]. PLoS One, 2010, 5(5):e10796.doi: 10.1371/journal.pone.0010796.
|
[25] |
Basse A L, Dixen K, Yadav R, Tygesen M P, Qvortrup K, Kristiansen K, Quistorff B, Gupta R, Wang J, Hansen J B. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling[J]. BMC Genomics, 2015, 16(1):215.doi: 10.1186/s12864-015-1405-8.
|
[26] |
Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance[J]. Physiological Reviews, 2004, 84(1):277-359.doi: 10.1152/physrev.00015.2003.
|
[27] |
|
|
Zhang D R. Adiponectin and adiponectin receptor mediated adipogenic gene expression and molecular regulation mechanism in sheep muscle,visceral and subcutaneous adipocytes[D]. Lanzhou: Gansu Agricultural University, 2019.
|
[28] |
Lu W H, Feng W J, Lai J Y, Yuan D L, Xiao W F, Li Y S. Role of adipokines in sarcopenia[J]. Chinese Medical Journal, 2023, 136(15):1794-1804.doi: 10.1097/cm9.0000000000002255.
|
[29] |
Fiaschi T, Cirelli D, Comito G, Gelmini S, Ramponi G, Serio M, Chiarugi P. Globular adiponectin induces differentiation and fusion of skeletal muscle cells[J]. Cell Research, 2009, 19(5):584-597.doi: 10.1038/cr.2009.39.
pmid: 19350052
|
[30] |
Gamberi T, Modesti A, Magherini F, D'Souza D M, Hawke T, Fiaschi T. Activation of autophagy by globular adiponectin is required for muscle differentiation[J]. Biochimica et Biophysica Acta, 2016, 1863(4):694-702.doi: 10.1016/j.bbamcr.2016.01.016.
pmid: 26826036
|
[31] |
Ge Y C, Zhou M, Chen C, Wu X J, Wang X B. Role of AMPK mediated pathways in autophagy and aging[J]. Biochimie, 2022, 195:100-113.doi: 10.1016/j.biochi.2021.11.008.
|
[32] |
Kang C, Ji L L. Role of PGC-1α signaling in skeletal muscle health and disease[J]. Annals of the New York Academy of Sciences, 2012, 1271(1):110-117.doi: 10.1111/j.1749-6632.2012.06738.x.
|
[33] |
Miranda D A, Kim J H, Nguyen L N, Cheng W, Tan B C, Goh V J, Tan J S Y, Yaligar J, Kn B P, Velan S S, Wang H Y, Silver D L. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue[J]. Journal of Biological Chemistry, 2014, 289(14):9560-9572.doi: 10.1074/jbc.M114.547687.
pmid: 24519944
|
[34] |
Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis:a critical point in metabolic homeostasis[J]. Nutrients, 2015, 7(11):9453-9474.doi: 10.3390/nu7115475.
pmid: 26580649
|
[35] |
Nishihama N, Nagayama T, Makino S, Koishi R. Mice lacking fat storage-inducing transmembrane protein 2 show improved profiles upon pressure overload-induced heart failure[J]. Heliyon, 2019, 5(3):e01292.doi: 10.1016/j.heliyon.2019.e01292.
|
[36] |
|
|
Chen X M, Li Y L, He W N, Lu H C, Liao J L, Huang Z, Liu G B. Research progress of molecular marker technology in goat breeding[J]. China Herbivore Science, 2023, 43(6):45-51.
|
[37] |
|
|
Li X J. Screening of genes related to sheep meat production performance and establishment of KASP gene typing method[D]. Baoding: Hebei Agricultural University, 2020.
|
[38] |
Liu F, Calhoun B, Alam M S, Sun M M, Wang X C, Zhang C, Haldar K, Lu X. Case report:a synonymous VHL mutation (c.414A>G,p.Pro138Pro) causes pathogenic familial hemangioblastoma through dysregulated splicing[J]. BMC Medical Genetics, 2020, 21(1):42.doi: 10.1186/s12881-020-0976-7.
|
[39] |
Cheng J B, Zhang X X, Li F D, Yuan L F, Zhang D Y, Zhang Y K, Song Q Z, Li X L, Zhao Y, Xu D, Zhao L M, Li W X, Wang J H, Zhou B B, Lin C C, Yang X B, Wang W M. Detecting single nucleotide polymorphisms in MEF2B and UCP3 and elucidating their association with sheep growth traits[J]. DNA and Cell Biology, 2021, 40(12):1554-1562.doi: 10.1089/dna.2021.0782.
|
[40] |
Walsh I M, Bowman M A, Soto Santarriaga I F, Rodriguez A, Clark P L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3528-3534.doi: 10.1073/pnas.1907126117.
pmid: 32015130
|