[1] |
|
|
Qian W, Liu Y, Li M F, Yang D L, Chen J J, Cheng H B, Chang L, Chai S X. Genetic analysis of accumulation and translocation of sucrose in different organs after flowering in wheat ILs population under different water conditions[J]. Journal of Triticeae Crops, 2017, 37(10):1309-1317.
|
[2] |
Housley T L. Role of fructans redistributed from vegetative tissues in grain filling of wheat and barley[J]. Developments in Crop Science, 2000, 26:207-221.doi: 10.1016/S0378-519X(00)80011-2.
|
[3] |
Xue G P, McIntyre C L, Jenkins C L D, Glassop D, van Herwaarden A F, Shorter R. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat[J]. Plant Physiology, 2008, 146(2):441-454.doi: 10.1104/pp.107.113076.
|
[4] |
Veenstra L D, Jannink J L, Sorrells M E. Wheat Fructans:A potential breeding target for nutritionally improved,climate-resilient varieties[J]. Crop Science, 2017, 57(3):1624-1640.doi: 10.2135/cropsci2016.11.0955.
URL
|
[5] |
|
|
Wang Z L, He M R, Fu J M, Tian Q Z, Yin Y P, Cao H M. Effects of source-sink regulation on irrigation and the production and distribution of photosynthetic products after flowering of dryland wheat[J]. Acta Agronomica Sinica, 1999, 25(2):162-168.
|
[6] |
Joudi M, Ahmadi A, Mohamadi V, Abbasi A, Vergauwen R, Mohammadi H, Van den Ende W. Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress[J]. Physiologia Plantarum, 2012, 144(1):1-12.doi: 10.1111/j.1399-3054.2011.01517.x.
URL
|
[7] |
|
|
Yang D L, Li W, Jing R L, Chang X P. Genetic analysis of quantitative traits associated with soluble carbohydrate content of doubled haploid population in wheat(Triticum aestivum L.) stem[J]. Acta Agronomica Sinica, 2007, 33(9):1543-1547.
|
[8] |
Yang D L, Jing R L, Chang X P, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat ( Triticum aestivum L.) stems[J]. Genetics, 2007, 176(1):571-584.doi: 10.1534/genetics.106.068361.
URL
|
[9] |
Rebetzke G J, Van Herwaarden A F, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell N A, Richards R A. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat[J]. Australian Journal of Agricultural Research, 2008, 59(10):891.doi: 10.1071/AR08067.
URL
|
[10] |
Li M F, Liu Y, Ma J F, Zhang P P, Wang C X, Su J J, Yang D L. Genetic dissection of stem WSC accumulation and remobilization in wheat ( Triticum aestivum L.) under terminal drought stress[J]. BMC Genetics, 2020, 21(1):50.doi: 10.1186/s12863-020-00855-1.
|
[11] |
|
|
Tan X J, Wu Z K, Cheng W D, Wang T Y, Li Y. Association analysis and its application in plant genetic research[J]. Bulletin of Botany, 2011, 46(1):108-118.
|
[12] |
pmid: 21182529
|
[13] |
Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants[J]. The Plant Genome, 2008, 1(1):5-20.doi: 10.3835/plantgenome2008.02.0089.
|
[14] |
Dong Y, Liu J D, Zhang Y, Geng H W, Rasheed A, Xiao Y G, Cao S H, Fu L P, Yan J, Wen W E, Zhang Y, Jing R L, Xia X C, He Z H. Genome-wide association of stem water soluble carbohydrates in bread wheat[J]. PLoS One, 2016, 11(11):e0164293.doi: 10.1371/journal.pone.0164293.
URL
|
[15] |
Fu L P, Wu J C, Yang S R, Jin Y R, Liu J D, Yang M J, Rasheed A, Zhang Y, Xia X C, Jing R L, He Z H, Xiao Y G. Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat[J]. Theoretical and Applied Genetics, 2020, 133(10):2897-2914.doi: 10.1007/s00122-020-03640-x.
pmid: 32594265
|
[16] |
Wang S C, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array[J]. Frontiers in Plant Science, 2014, 12(6):787-796.doi: 10.1111/pbi.12183.
|
[17] |
Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number[J]. Scientific Reports, 2017, 7(1):3788.doi: 10.1038/s41598-017-04028-6.
pmid: 28630475
|
[18] |
Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone[J]. Scientific Reports, 1954, 57(3):508-514.doi: 10.1042/bj0570508.
|
[19] |
Toker C. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean ( Vicia faba L.)[J]. Hereditas, 2004, 140(3):222-225.doi: 10.1111/j.1601-5223.2004.01780.x.
URL
|
[20] |
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1):8-15.doi: 10.1007/BF02772108.
URL
|
[21] |
Wang P, Tian T, Ma J F, Liu Y, Zhang P, Chen T, Shahinnia F, Yang D L. Genome-wide association study of kernel traits using a 35K SNP array in bread wheat ( Triticum aestivum L.)[J]. Frontiers in Plant Science, 2022, 13:905660.doi: 10.3389/fpls.2022.905660.
URL
|
[22] |
Liu K J, Muse S V. PowerMarker:An integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.doi: 10.1093/bioinformatics/bti282.
URL
|
[23] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL:Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19):2633-2635.doi: 10.1093/bioinformatics/btm308.
pmid: 17586829
|
[24] |
Yu J M, Pressoir G, Briggs W H, Vroh Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2):203-208.doi: 10.1038/ng1702.
pmid: 16380716
|
[25] |
Zhang Z M, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics, 2010, 42(4):355-360.doi: 10.1038/ng.546.
pmid: 20208535
|
[26] |
Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics:A platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant, 2021, 14(12):1965-1968.doi: 10.1016/j.molp.2021.10.006.
URL
|
[27] |
Zhang L C, Dong C H, Chen Z X, Gui L X, Chen C, Li D P, Xie Z C, Zhang Q, Zhang X Y, Xia C, Liu X, Kong X Y, Wang J R. WheatGmap:A comprehensive platform for wheat gene mapping and genomic studies[J]. Molecular Plant, 2021, 14(2):187-190.doi: 10.1016/j.molp.2020.11.018.
URL
|
[28] |
Chen H G, Zeng X L, Yang J, Cai X, Shi Y M, Zheng R R, Wang Z Q, Liu J Y, Yi X X, Xiao S W, Fu Q, Zou J J, Wang C Y. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J]. Horticulture Research, 2021, 8(1):98.doi: 10.1038/s41438-021-00531-0.
|
[29] |
Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat ( T.aestivum) sucrose synthase 2 gene ( TaSus2) active in endosperm development is associated with yield traits[J]. Functional & Integrative Genomics, 2011, 11(1):49-61.doi: 10.1007/s10142-010-0188-x.
|
[30] |
|
|
Jing F L, Zhang P P, Miao Y P, Chen T, Liu Y, Yang D L. Cloning and expression analysis of TaSPP gene in wheat[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2):28-34.
|
[31] |
Jing F L, Miao Y P, Zhang P P, Chen T, Liu Y, Ma J F, Li M F, Yang D L. Characterization of TaSPP-5A gene associated with sucrose content in wheat ( Triticum aestivum L.)[J]. BMC Plant Biology, 2022, 22(1):58.doi: 10.1186/s12870-022-03442-x.
|
[32] |
pmid: 11312132
|
[33] |
Vrielink A, Rüger W, Driessen H P, Freemont P S. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose[J]. The EMBO Journal, 1994, 13(15):3413-3422.doi: 10.1002/j.1460-2075.1994.tb06646.x.
|
[34] |
Campbell J A, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. The Biochemical Journal, 1997, 326 (Pt 3):929-939.doi: 10.1042/bj3260929u.
URL
|
[35] |
Unligil U M, Rini J M. Glycosyltransferase structure and mechanism[J]. Current Opinion in Structural Biology, 2000, 10(5):510-517.doi: 10.1016/s0959-440x(00)00124-x.
|
[36] |
Ishikura N, Mato M. Partial purification and some properties of flavonol 3-O-glycosyltransferases from seedlings of Vigna mungo,with special reference to the formation of kaempferol 3-O-galactoside and 3-O-glucoside[J]. Plant and Cell Physiology, 1993, 34(2):329-335.doi: 10.1093/oxfordjournals.pcp.a078424.
|
[37] |
Bar-Peled M, Lewinsohn E, Fluhr R, Gressel J. UDP-rhamnose:Flavanone-7-O-glucoside-2″-O-rhamnosyltransferase.Purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus[J]. The Journal of Biological Chemistry, 1991, 266(31):20953-20959.doi: 10.1016/s0021-9258(18)54803-1.
|
[38] |
Jones P, Messner B, Nakajima J I, Schäffner A R, Saito K. UGT73C6 and UGT78D1,glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2003, 278(45):43910-43918.doi: 10.1074/jbc.m303523200.
URL
|
[39] |
Li H M, Chen H, Yang Z N, Gong J M. Cdi gene is required for pollen germination and tube growth in Arabidopsis[J]. FEBS Letters, 2012, 586(7):1027-1031.doi: 10.1016/j.febslet.2012.02.046.
|
[40] |
|
|
Wei J H, Song Y R. Advances of studies on plant cellulose synthase[J]. Chinese Bulletin of Botany, 2002, 19(6):641-649.
|
[41] |
|
|
Li Y, Hu S L, Lu X Q, Jiang Y, Huang S X, Li X Q. Evolution analysis of the plant cellulose synthase(CesA)gene family[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(2):101-105.
doi: 10.7668/hbnxb.2008.02.023
|
[42] |
Hu H Z, Zhang R, Feng S Q, Wang Y M, Wang Y T, Fan C F, Li Y, Liu Z Y, Schneider R, Xia T, Ding S Y, Persson S, Peng L C. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis[J]. Plant Biotechnology Journal, 2018, 16(5):976-988.doi: 10.1111/pbi.12842.
URL
|
[43] |
|
|
Chen Y L, Cen G L, Sun T T, You C H, Que Y X, Su Y C. Progress on plant chitinase and β-1,3-glucanase and their synergistic function in disease resistance[J]. Journal of Agricultural Biotechnology, 2022, 30(7):1394-1411.
|
[44] |
Wally O, Jayaraj J, Punja Z. Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise[J]. European Journal of Plant Pathology, 2009, 123(3):331-342.doi: 10.1007/s10658-008-9370-6.
URL
|
[45] |
Nookaraju A, Agrawal D C. Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew[J]. The Plant Cell, Tissue and Organ Culture, 2012, 111(1):15-28.doi: 10.1007/s11240-012-0166-1.
URL
|