[1] |
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews, Molecular Cell Biology, 2022, 23(10):663-679.doi: 10.1038/s41580-022-00499-2.
|
[2] |
Roy S, Liu W, Nandety R S, Crook A, Mysore K S, Pislariu C I, Frugoli J, Dickstein R, Udvardi M K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation[J]. The Plant Cell, 2020, 32(1):15-41.doi: 10.1105/tpc.19.00279.
pmid: 31649123
|
[3] |
Yang J, Lan L Y, Jin Y, Yu N, Wang D, Wang E T. Mechanisms underlying legume-rhizobium symbioses[J]. Journal of Integrative Plant Biology, 2022, 64(2):244-267.doi: 10.1111/jipb.13207.
URL
|
[4] |
Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A. Reactive oxygen species and nitric oxide control early steps of the legume- Rhizobium symbiotic interaction[J]. Frontiers in Plant Science, 2016, 7:454.doi: 10.3389/fpls.2016.00454.
|
[5] |
Minguillón S, Matamoros M A, Duanmu D Q, Becana M. Signaling by reactive molecules and antioxidants in legume nodules[J]. New Phytologist, 2022, 236(3):815-832.doi: 10.1111/nph.18434.
pmid: 35975700
|
[6] |
Wang G F, Li W Q, Li W Y, Wu G L, Zhou C Y, Chen K M. Characterization of rice NADPH oxidase genes and their expression under various environmental conditions[J]. International Journal of Molecular Sciences, 2013, 14(5):9440-9458.doi: 10.3390/ijms14059440.
URL
|
[7] |
Li X H, Zhang H J, Tian L M, Huang L, Liu S X, Li D Y, Song F M. Tomato SlRbohB,a member of the NADPH oxidase family,is required for disease resistance against Botrytis cinerea and tolerance to drought stress[J]. Frontiers in Plant Science, 2015, 6:463.doi: 10.3389/fpls.2015.00463.
|
[8] |
Kaur G, Pati P K. Analysis of cis-acting regulatory elements of Respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions[J]. Computational Biology and Chemistry, 2016, 62:104-118.doi: 10.1016/j.compbiolchem.2016.04.002.
URL
|
[9] |
Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte C P, Schulze W X, Romeis T. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):8744-8749.doi: 10.1073/pnas.1221294110.
pmid: 23650383
|
[10] |
Kadota Y, Shirasu K, Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity[J]. Plant and Cell Physiology, 2015, 56(8):1472-1480.doi: 10.1093/pcp/pcv063.
pmid: 25941234
|
[11] |
Chaouch S, Queval G, Noctor G. AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis[J]. The Plant Journal, 2012, 69(4):613-627.doi: 10.1111/j.1365-313x.2011.04816.x.
|
[12] |
Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases[J]. Trends in Plant Science, 2012, 17(1):9-15.doi: 10.1016/j.tplants.2011.10.001.
|
[13] |
Foreman J, Demidchik V, Bothwell J H F, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones J D, Davies J M, Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J]. Nature, 2003, 422(6930):442-446.doi: 10.1038/nature01485.
URL
|
[14] |
Müller K, Carstens A C, Linkies A, Torres M A, Leubner-Metzger G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening[J]. New Phytologist, 2009, 184(4):885-897.doi: 10.1111/j.1469-8137.2009.03005.x.
|
[15] |
Kaya H, Nakajima R, Iwano M, Kanaoka M M, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca 2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth[J]. The Plant Cell, 2014, 26(3):1069-1080.doi: 10.1105/tpc.113.120642.
URL
|
[16] |
Lassig R, Gutermuth T, Bey T D, Konrad K R, Romeis T. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth[J]. The Plant Journal, 2014, 78(1):94-106.doi: 10.1111/tpj.12452.
pmid: 24506280
|
[17] |
Cheng C X, Xu X Z, Gao M, Li J, Guo C L, Song J Y, Wang X P. Genome-wide analysis of respiratory burst oxidase homologs in grape ( Vitis vinifera L.)[J]. Internatiolan Journal of Molecular Sciences, 2013, 14(12):24169-24186.doi: 10.3390/ijms141224169.
|
[18] |
Wang X, Zhang M M, Wang Y J, Gao Y T, Li R, Wang G F, Li W Q, Liu W T, Chen K M. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice[J]. Physiologia Plantarum, 2016, 156(4):421-443.doi: 10.1111/ppl.12389.
URL
|
[19] |
Marino D, Andrio E, Danchin E G J, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning[J]. New Phytologist, 2011, 189(2):580-592.doi: 10.1111/j.1469-8137.2010.03509.x.
|
[20] |
Montiel J, Nava N, Cárdenas L, Sánchez-LÓpez R, Arthikala M K, Santana O, Sánchez F, Quinto C. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by rhizobia[J]. Plant and Cell Physiology, 2012, 53(10):1751-1767.doi: 10.1093/pcp/pcs120.
pmid: 22942250
|
[21] |
Arthikala M K, Sánchez-LÓpez R, Nava N, Santana O, C rdenas L, Quinto C. RbohB,a Phaseolus vulgaris NADPH oxidase gene,enhances symbiosome number,bacteroid size,and nitrogen fixation in nodules and impairs mycorrhizal colonization[J]. New Phytologist, 2014, 202(3):886-900.doi: 10.1111/nph.12714.
URL
|
[22] |
Arthikala M K, Montiel J, Sánchez-LÓpez R, Nava N, Cárdenas L, Quinto C. Respiratory burst oxidase homolog gene A is crucial for Rhizobium infection and nodule maturation and function in common bean[J]. Frontiers in Plant Science, 2017, 8:2003.doi: 10.3389/fpls.2017.02003.
URL
|
[23] |
Ranjan A, Jayaraman D, Grau C, Hill J H, Whitham S A, Ané J M, Smith D L, Kabbage M. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases[J]. Molecular Plant Pathology, 2018, 19(3):700-714.doi: 10.1111/mpp.12555.
URL
|
[24] |
Wang X F, Cai Y, Wang H, Zeng Y L, Zhuang X H, Li B Y, Jiang L W. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis[J]. The Plant Cell, 2014, 26(10):4102-4118.doi: 10.1105/tpc.114.129759.
URL
|
[25] |
Yuan S L, Ke D X, Li R, Li X Y, Wang L, Chen H F, Zhang C J, Huang Y, Chen L M, Hao Q N, Yang H L, Cao D, Chen S L, Guo W, Shan Z H, Yang Z L, Zhang X J, Qiu D Z, Guan Y F, Zhou X N. Genome-wide survey of soybean papain-like cysteine proteases and their expression analysis in root nodule symbiosis[J]. BMC Plant Biology, 2020, 20 (1):517.doi: 10.1186/s12870-020-02725-5.
pmid: 33183238
|
[26] |
Ke D X, Peng K F. The expression of LjROP4 is required for rhizobial infection in Lotus japonicus[J]. Canadian Journal of Plant Science, 2019, 99(6):897-904.doi: 10.1139/CJPS-2019-0056.
URL
|
[27] |
Li X X, Zheng J K, Yang Y Q, Liao H. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development[J]. Plant Physidogy, 2018, 178(3):1233-1248.doi: 10.1104/pp.18.01018.
|
[28] |
王晓丽, 王敏, 岳爱琴, 郭数进, 王鹏, 王利祥, 杨婷婷, 张海生, 张永坡, 高春艳, 张武霞, 牛景萍, 杜维俊, 赵晋忠. 氮素营养和根瘤菌接种对大豆结瘤固氮和生长的影响[J]. 华北农学报, 2022, 37(1):95-102.doi: 10.7668/hbnxb.20192484.
|
|
Wang X L, Wang M, Yue A Q, Guo S J, Wang P, Wang L X, Yang T T, Zhang H S, Zhang Y P, Gao C Y, Zhang W X, Niu J P, Du W J, Zhao J Z. Effects of nitrogen nutrition and Rhizobium inoculation on nodulation and nitrogen fixation and growth of soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(1):95-102.
|
[29] |
李金婷, 韦锦坚, 韦持章, 农玉琴, 骆妍飞, 陆金梅, 廖春文, 覃潇敏. 茶树/大豆间作体系氮素对茶叶品质成分及其土壤养分的影响[J]. 华北农学报, 2021, 36(S1):282-288.doi: 10.7668/hbnxb.20191783.
|
|
Li J T, Wei J J, Wei C Z, Nong Y Q, Luo Y F, Lu J M, Liao C W, Qin X M. Effects of nitrogen rates on soil nutrients and tea quality components in tea and soybean intercropping system[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):282-288.
doi: 10.7668/hbnxb.20191783
|
[30] |
韦锦坚, 覃潇敏, 农玉琴, 骆妍妃, 陆金梅, 陈远权, 韦持章. 茶与大豆间作对土壤微生物群落代谢功能多样性的影响[J]. 华北农学报, 2021, 36(S1):289-296.doi: 10.7668/hbnxb.20191878.
|
|
Wei J J, Qin X M, Nong Y Q, Luo Y F, Lu J M, Chen Y Q, Wei C Z. Effects of tea and soybean intercropping on metabolic functional diversity of soil microbial community[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):289-296.
doi: 10.7668/hbnxb.20191878
|
[31] |
|
|
Wu J, Cha Y Y, Li X, Gao K. Bioinformatic and expression analysis of four NIN transcription factors in soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(S1):26-34.
doi: 10.7668/hbnxb.20193040
|
[32] |
|
|
Li J H, Shu W T, Chang S H, Yang Q C, Zhang D H, Zhang B L, Geng Z. Analysis of yield and quality of soybean varieties in regional trial in Henan Province from 1985 to 2020[J]. Journal of Henan Agricultural Sciences, 2022, 51(1):50-59.
doi: 10.15933/j.cnki.1004‐3268.2022.01.007
|
[33] |
Montiel J, Arthikala M K, Cárdenas L, Quinto C. Legume NADPH oxidases have crucial roles at different stages of nodulation[J]. Internatiolan Journal of Molecular Sciences, 2016, 17(5):E680.doi: 10.3390/ijms17050680.
|
[34] |
Fonseca-García C, Zayas A E, Montiel J, Nava N, Sánchez F, Quinto C. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation[J]. BMC Genomics, 2019, 20(1):800.doi: 10.1186/s12864-019-6162-7.
pmid: 31684871
|
[35] |
Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization[J]. Planta, 2016, 243(1):251-262.doi: 10.1007/s00425-015-2407-0.
pmid: 26403286
|
[36] |
Wong H L, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension[J]. The Plant Cell, 2007, 19(12):4022-4034.doi: 10.1105/tpc.107.055624.
URL
|
[37] |
Kaur G, Sharma A, Guruprasad K, Pati P K. Versatile roles of plant NADPH oxidases and emerging concepts[J]. Biotechnology Advances, 2014, 32(3):551-563.doi: 10.1016/j.biotechadv.2014.02.002.
|
[38] |
Ke D X, Fang Q, Chen C F, Zhu H, Chen T, Chang X J, Yuan S L, Kang H, Ma L, Hong Z L, Zhang Z M. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus[J]. Plant Physiology, 2012, 159(1):131-143.doi: 10.1104/pp.112.197269.
URL
|
[39] |
Kiirika L M, Bergmann H F, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection[J]. Plant Physiology, 2012, 159(1):501-516.doi: 10.1104/pp.112.193706.
URL
|
[40] |
Lei M J, Wang Q, Li X L, Chen A M, Luo L, Xie Y J, Li G, Luo D, Mysore K S, Wen J Q, Xie Z P, Staehelin C, Wang Y Z. The small GTPase ROP10 of Medicago truncatula is required for both tip growth of root hairs and nod factor-induced root hair deformation[J]. The Plant Cell, 2015, 27(3):806-822.doi: 10.1105/tpc.114.135210.
URL
|
[41] |
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and functions of ROP GTPases in plant-microbe interactions[J]. Cells, 2020, 9(9):2016.doi: 10.3390/cells9092016.
|
[42] |
Gao J P, Xu P, Wang M X, Zhang X W, Yang J, Zhou Y, Murray J D, Song C P, Wang E T. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation[J]. Current Biology, 2021, 31(16):3538-3550.e5.doi: 10.1016/j.cub.2021.06.011.
|
[43] |
Severin A J, Woody J L, Bolon Y T, Joseph B, Diers B W, Farmer A D, Muehlbauer G J, Nelson R T, Grant D, Specht J E, Graham M A, Cannon S B, May G D, Vance C P, Shoemaker R C. RNA-seq atlas of Glycine max:A guide to the soybean transcriptome[J]. BMC Plant Biology, 2010, 10:160.doi: 10.1186/1471-2229-10-160.
pmid: 20687943
|