[1] |
Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A,B,and D genomes of common wheat( Triticum aestivum)[J]. Molecular Phylogenetics and Evolution, 2006, 39(1):70-82.doi: 10.1016/j.ympev.2006.01.023.
doi: 10.1016/j.ympev.2006.01.023
pmid: 16504543
|
[2] |
Brinton J, Uauy C. A reductionist approach to dissecting grain weight and yield in wheat[J]. Journal of Integrative Plant Biology, 2019, 61(3):337-358.doi: 10.1111/jipb.12741.
doi: 10.1111/jipb.12741
|
[3] |
Beres B L, Hatfield J L, Kirkegaard J A, Eigenbrode S D, Pan W L, Lollato R P, Hunt J R, Strydhorst S, Porker K, Lyon D, Ransom J, Wiersma J. Toward a better understanding of genotype×environment×management interactions-a global wheat initiative agronomic research strategy[J]. Front Plant Sci, 2020, 11:828.doi: 10.3389/fpls.2020.00828.
doi: 10.3389/fpls.2020.00828
URL
|
[4] |
Brisson N, Gate P, Gouache D, Charmet G, Oury F X, Huard F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France[J]. Field Crops Res, 2010, 119(1):201-212.doi: 10.1016/j.fcr.2010.07.012.
doi: 10.1016/j.fcr.2010.07.012
URL
|
[5] |
Simmonds J, Scott P, Brinton J, Mestre T C, Bush M, Del Blanco A, Dubcovsky J, Uauy C. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains[J]. Theoretical and Applied Genetics, 2016, 129(6):1099-1112.doi: 10.1007/s00122-016-2686-2.
doi: 10.1007/s00122-016-2686-2
pmid: 26883045
|
[6] |
Peng Z S, Yang J, Wei S H, Zeng J H. Characterization of the common wheat( Triticum aestivum L.)mutation line producing three pistils in a floret[J]. Hereditas, 2004, 141(1):15-18.doi: 10.1111/j.1601-5223.2004.01787.x.
doi: 10.1111/j.1601-5223.2004.01787.x
URL
|
[7] |
Peng Z S, Yang Z J, Ouyang Z M, Yang H. Characterization of a novel pistillody mutation in common wheat[J]. Australian Journal of Crop Science, 2013, 7(1):159-164.doi: 10.3316/informit.143085142306594.
doi: 10.3316/informit.143085142306594
|
[8] |
Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase:A new era of structural biology[J]. Annual Review of Plant Biology, 2004, 55:69-84.doi: 10.1146/annurev.arplant.55.031903.141619.
doi: 10.1146/annurev.arplant.55.031903.141619
URL
|
[9] |
Chollet R, Vidal J, O'Leary M H. PHOSPHO ENOLPYRUVATE CARBOXYLASE:a ubiquitous,highly regulated enzyme in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:273-298.doi: 10.1146/annurev.arplant.47.1.273.
doi: 10.1146/annurev.arplant.47.1.273
URL
|
[10] |
Nimmo H G. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants[J]. Arch Biochem Biophys, 2003, 414(2):189-196.doi: 10.1016/s0003-9861(03)00115-2.
doi: 10.1016/s0003-9861(03)00115-2
pmid: 12781770
|
[11] |
doi: 10.1146/annurev-arplant-042809-112238
pmid: 20192753
|
[12] |
Svensson P, Bläsing O E, Westhoff P. Evolution of C4 phosphoenolpyruvate carboxylase[J]. Archives of Biochemistry and Biophysics, 2003, 414(2):180-188.doi: 10.1016/s0003-9861(03)00165-6.
doi: 10.1016/s0003-9861(03)00165-6
pmid: 12781769
|
[13] |
Nimmo H G. The regulation of phosphoenolpyruvate carboxylase in CAM plants[J]. Trends in Plant Science, 2000, 5(2):75-80.doi: 10.1016/s1360-1385(99)01543-5.
doi: 10.1016/s1360-1385(99)01543-5
pmid: 10664617
|
[14] |
Rao S K, Magnin N C, Reiskind J B, Bowes G. Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell,facultative C4 system of Hydrilla verticillata[J]. Plant Physiology, 2002, 130(2):876-886.doi: 10.1104/pp.008045.
doi: 10.1104/pp.008045
URL
|
[15] |
Tarczynski M C, Outlaw W H Jr. Partial characterization of guard-cell phosphoenolpyruvate carboxylase:kinetic datum collection in real time from single-cell activities[J]. Arch Biochem Biophys, 1990, 280(1):153-158.doi: 10.1016/0003-9861(90)90530-c.
doi: 10.1016/0003-9861(90)90530-c
pmid: 2353817
|
[16] |
Sánchez R, Cejudo F J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):949-957.doi: 10.1104/pp.102.019653.
doi: 10.1104/pp.102.019653
URL
|
[17] |
Mitchell P L, Sheehy J E. Supercharging rice photosynthesis to increase yield[J]. The New Phytologist, 2006, 171(4):688-693.doi: 10.1111/j.1469-8137.2006.01855.x.
doi: 10.1111/j.1469-8137.2006.01855.x
URL
|
[18] |
Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants[J]. Photosynthesis Research, 2003, 77(2/3):227-239.doi: 10.1023/A:1025861431886.
doi: 10.1023/A:1025861431886
URL
|
[19] |
Qi X L, Xu W G, Zhang J Z, Guo R, Zhao M Z, Hu L, Wang H W, Dong H B, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase(PEPC)gene under high temperature stress[J]. Protoplasma, 2017, 254(2):1017-1030.doi: 10.1007/s00709-016-1010-y.
doi: 10.1007/s00709-016-1010-y
URL
|
[20] |
Yamamoto N, Tong W, Lü B B, Peng Z S, Yang Z J. The original Form of C 4 photosynthetic phosphoenolpyruvate carboxylase is retained in pooids but lost in rice[J]. Front Plant Sci, 2022, 13:905894.doi: 10.3389/fpls.2022.905894.
doi: 10.3389/fpls.2022.905894
URL
|
[21] |
Yang Z J, Peng Z S, Wei S H, Liao M L, Yu Y, Jang Z. Pistillody mutant reveals key insights into stamen and pistil development in wheat( Triticum aestivum L.)[J]. BMC Genomics, 2015, 16(1):211.doi: 10.1186/s12864-015-1453-0.
doi: 10.1186/s12864-015-1453-0
URL
|
[22] |
doi: 10.3969/j.issn.1000-8551.2007.06.011
|
|
Yang Z J, Peng Z S, Zhou Y H, Peng L J, Wei S H. Evaluation on the genetic background of wheat near isogentic lines for three pistils character by srap markers[J]. Acta Agriculturae Nucleatae Sinica, 2012, 26(1):22-27.
|
[23] |
doi: 10.7668/hbnxb.1996.02.002
|
|
Wang J Y, Zhao C J, Yang B. A study on florets differentiation,development and degeneration in winter wheat[J]. Acta Agriculturae Boreali-Sinica, 1996, 11(2):9-13.
|
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[25] |
Yamamoto N, Kubota T, Masumura T, Shiraishi N, Tanaka K, Sugimoto T, Oji Y. Molecular cloning,gene expression and functional expression of a phosphoenolpyruvate carboxylase Osppc1 in developing rice seeds:implication of involvement in nitrogen accumulation[J]. Seed Sci Research, 2014, 24(1):23-36.doi: 10.1017/S0960258513000354.
doi: 10.1017/S0960258513000354
URL
|
[26] |
Ruiz-Ballesta I, Baena G, Gandullo J, Wang L Q, She Y M, Plaxton W C, Echevarría C. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination[J]. Journal of Experimental Botany, 2016, 67(11):3523-3536.doi: 10.1093/jxb/erw186.
doi: 10.1093/jxb/erw186
pmid: 27194739
|
[27] |
Deng X D, Cai J J, Li Y J, Fei X W. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii[J]. Biotechnol Lett, 2014, 36(11):2199-2208.doi: 10.1007/s10529-014-1593-3.
doi: 10.1007/s10529-014-1593-3
URL
|
[28] |
O'Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC(phosphoenolpyruvate carboxylase):Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs[J]. The Biochemical Journal, 2011, 436(1):15-34.doi: 10.1042/BJ20110078.
doi: 10.1042/BJ20110078
URL
|
[29] |
O'Leary B, Fedosejevs E T, Hill A T, Bettridge J, Park J, Rao S K, Leach C A, Plaxton W C. Tissue-specific expression and post-translational modifications of plant-and bacterial-type phosphoenolpyruvate carboxylase isozymes of the Castor oil plant, Ricinus communis L.[J]. Journal of Experimental Botany, 2011, 62(15):5485-5495.doi: 10.1093/jxb/err225.
doi: 10.1093/jxb/err225
URL
|
[30] |
doi: 10.3724/SP.J.1006.2012.00285
|
|
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress[J]. Acta Agronomica Sinica, 2012, 38(2):285-292.
|
[31] |
González M C, Sánchez R, Cejudo F J. Abiotic stresses afecting water balanace induce phosphoenolpyruvate craboxylase expression in roots of wheat seedlings[J]. Planta, 2003, 216(6):985-992.doi: 10.1007/s00425-002-0951-x.
doi: 10.1007/s00425-002-0951-x
|
[32] |
Igawa T, Fujiwara M, Tanaka I, Fukao Y, Yanagawa Y. Characterization of bacterial-type phosphoenolpyruvate carboxylase expressed in male gametophyte of higher plants[J]. BMC Plant Biol, 2010, 10:200.doi: 10.1186/1471-2229-10-200.
doi: 10.1186/1471-2229-10-200
pmid: 20836890
|
[33] |
Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism:Critical roles in male fertility and other aspects of reproductive development in plants[J]. Molecular Plant, 2020, 13(7):955-983.doi: 10.1016/j.molp.2020.05.009.
doi: 10.1016/j.molp.2020.05.009
URL
|
[34] |
Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S. Altered expression of wheat AINTEGUMENTA homolog,WANT-1,in pistil and pistil-like transformed stamen of an alloplasmic line with Aegilops crassa cytoplasm[J]. Development Genes and Evolution, 2009, 219(4):175-187.doi: 10.1007/s00427-009-0275-y.
doi: 10.1007/s00427-009-0275-y
pmid: 19255779
|