[1] |
Südhof T C, Rothman J E. Membrane fusion:grappling with SNARE and SM proteins[J]. Science, 2009, 323(5913):474-477.doi: 10.1126/science.1161748.
URL
|
[2] |
Morelli E, Speranza E A, Pellegrino E, Beznoussenko G V, Carminati F, Garré M, Mironov A A, Onorati M, Vaccari T. Activity of the SNARE protein SNAP29 at the endoplasmic reticulum and Golgi apparatus[J]. Frontiers in Cell and Developmental Biology, 2021,9:637565.doi: 10.3389/fcell.2021.637565.
|
[3] |
Ouyang Q Q, Liu R. MTOR-mediates hepatic lipid metabolism through an autophagic SNARE complex[J]. Autophagy, 2022, 18(6):1467-1469.doi: 10.1080/15548627.2022.2037853.
URL
|
[4] |
Wang C Y, Wang H F, Zhang D Y, Luo W W, Liu R L, Xu D Q, Diao L, Liao L J, Liu Z X. Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy[J]. Nature Communications, 2018, 9(1):3492.doi: 10.1038/s41467-018-05449-1.
pmid: 30154410
|
[5] |
Keser V, Lachance J F B, Alam S S, Lim Y, Scarlata E, Kaur A, Zhang T F, Lü S S, Lachapelle P, O'Flaherty C, Golden J A, Jerome-Majewska L A. Snap29 mutant mice recapitulate neurological and ophthalmological abnormalities associated with 22q11 and CEDNIK syndrome[J]. Communications Biology, 2019,2:375.doi: 10.1038/s42003-019-0601-5.
|
[6] |
Fuchs-Telem D, Stewart H, Rapaport D, Nousbeck J, Gat A, Gini M, Lugassy Y, Emmert S, Eckl K, Hennies H C, Sarig O, Goldsher D, Meilik B, Ishida-Yamamoto A, Horowitz M, Sprecher E. CEDNIK syndrome results from loss-of-function mutations in SNAP29[J]. The British Journal of Dermatology, 2011, 164(3):610-616.doi: 10.1111/j.1365-2133.2010.10133.x.
|
[7] |
Li Q L, Frank M, Akiyama M, Shimizu H, Ho S Y, Thisse C, Thisse B, Sprecher E, Uitto J. Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are crucial for epidermal morphogenesis in a zebrafish model of ichthyosis[J]. Disease Models & Mechanisms, 2011, 4(6):777-785.doi: 10.1242/dmm.007146.
|
[8] |
Wesolowski J, Caldwell V, Paumet F. A novel function for SNAP29(synaptosomal-associated protein of 29 kDa)in mast cell phagocytosis[J]. PLoS One, 2012, 7(11):e49886.doi: 10.1371/journal.pone.0049886.
URL
|
[9] |
|
|
Bai H P, Liu C, Zhang L, Zhang Z Q, Wu T L, Gao G S, Shi Q M. Isolation,identification and drug sensitivity test of Cynoglossus semilaevis-derived Shewanella algae[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(18):81-84,142.
|
[10] |
Zan Z J, Chen K, Wang H Y, Han Z R, Sun J F. Effects of a multistrain probiotic on the growth,immune function and intestinal microbiota of the tongue sole Cynoglossus semilaevis[J]. Aquaculture, 2023,575:739813.doi: 10.1016/j.aquaculture.2023.739813.
|
[11] |
Erfanmanesh A, Beikzadeh B, Aziz Mohseni F, Nikaein D, Mohajerfar T. Ulcerative dermatitis in barramundi due to coinfection with Streptococcus iniae and Shewanella algae[J]. Diseases of Aquatic Organisms, 2019, 134(2):89-97.doi: 10.3354/dao03363.
pmid: 31020947
|
[12] |
张继挺, 朱文渊, 王国良. 美国红鱼肾肿大症的病原及其致病性研究[J]. 宁波大学学报(理工版), 2013, 26(1):6-11.
|
|
Zhang J T, Zhu W Y, Wang G L. Pathogeny and pathogenicity of kidney intumesce of Sciaenops ocellatus[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2013, 26(1):6-11.
|
[13] |
Wang H C, Gu Y, Chen J, Cao H P. Shewanella algae:an emerging causative agent for ulcer disease in freshwater-farmed American eel Anguilla rostrata[J]. Israeli Journal of Aquaculture-Bamidgeh, 2020, 72:1-12.doi: 10.46989/001c.21953.
|
[14] |
Cao H P, Chen S, Lu L Q, An J. Shewanella algae:an emerging pathogen of black spot disease in freshwater-cultured whiteleg shrimp( Penaeus vannamei)[J]. Israeli Journal of Aquaculture-Bamidgeh, 2018, 70:1-7.doi: 10.46989/001c.20952.
|
[15] |
Cai J, Chen H, Thompson K D, Li C. Isolation and identification of Shewanella alga and its pathogenic effects on post-larvae of abalone Haliotis diversicolor supertexta[J]. Journal of Fish Diseases, 2006, 29(8):505-508.doi: 10.1111/j.1365-2761.2006.00732.x.
|
[16] |
Han Z R, Sun J F, Lv A J, Sung Y, Shi H Y, Hu X C, Xing K Z. Isolation,identification and characterization of Shewanella algae from reared tongue sole, Cynoglossus semilaevis Günther[J]. Aquaculture, 2017, 468(Part 1):356-362.doi: 10.1016/j.aquaculture.2016.10.038.
URL
|
[17] |
Levine B, Kroemer G. Biological functions of autophagy genes:a disease perspective[J]. Cell, 2019, 176(1/2):11-42.doi: 10.1016/j.cell.2018.09.048.
URL
|
[18] |
Rutsch A, Kantsjö J B, Ronchi F. The gut-brain axis:how microbiota and host inflammasome influence brain physiology and pathology[J]. Frontiers in Immunology, 2020,11:604179.doi: 10.3389/fimmu.2020.604179.
|
[19] |
Rapaport D, Lugassy Y, Sprecher E, Horowitz M. Loss of SNAP29 impairs endocytic recycling and cell motility[J]. PLoS One, 2010, 5(3):e9759.doi: 10.1371/journal.pone.0009759.
URL
|
[20] |
Causey D R, Pohl M A N, Stead D A, Martin S A M, Secombes C J, MacQueen D J. High-throughput proteomic profiling of the fish liver following bacterial infection[J]. BMC Genomics, 2018, 19(1):719.doi: 10.1186/s12864-018-5092-0.
pmid: 30285610
|
[21] |
Nishida K, Taneike M, Otsu K. The role of autophagic degradation in the heart[J]. Journal of Molecular and Cellular Cardiology, 2015, 78:73-79.doi: 10.1016/j.yjmcc.2014.09.029.
pmid: 25300865
|
[22] |
Geven E J W, Klaren P H M. The teleost head kidney:integrating thyroid and immune signalling[J]. Developmental and Comparative Immunology, 2017, 66:73-83.doi: 10.1016/j.dci.2016.06.025.
URL
|
[23] |
Fu Z Y, Qin J, Ma Z H, Yu G. Acute acidification stress weakens the head kidney immune function of juvenile Lates calcarifer[J]. Ecotoxicology and Environmental Safety, 2021,225:112712.doi: 10.1016/j.ecoenv.2021.112712.
|
[24] |
Lopez-Rivera E, Liu Y P, Verbitsky M, Anderson B R, Capone V P, Otto E A, et al. Genetic drivers of kidney defects in the DiGeorge syndrome[J]. The New England Journal of Medicine, 2017, 376(8):742-754.doi: 10.1056/NEJMoa1609009.
pmid: 28121514
|
[25] |
Usami M, Okada A, Taguchi K, Hamamoto S, Kohri K, Yasui T. Genetic differences in C57BL/6 mouse substrains affect kidney crystal deposition[J]. Urolithiasis, 2018, 46(6):515-522.doi: 10.1007/s00240-018-1040-3.
pmid: 29362828
|
[26] |
Van Muiswinkel W B, Lamers C H, Rombout J H. Structural and functional aspects of the spleen in bony fish[J]. Research in Immunology, 1991, 142(4):362-366.doi: 10.1016/0923-2494(91)90093-x.
pmid: 1925007
|
[27] |
Joyce W, Axelsson M. Regulation of splenic contraction persists as a vestigial trait in white-blooded Antarctic fishes[J]. Journal of Fish Biology, 2021, 98(1):287-291.doi: 10.1111/jfb.14579.
pmid: 33090461
|
[28] |
Zhou S T, Zhang X H, Fu Q, Cheng Z, Ji W B, Liu H G. The use of selenomethionine to reduce ammonia toxicity in porcine spleen by inhibiting endoplasmic reticulum stress and autophagy mediated by oxidative stress[J]. Ecotoxicology and Environmental Safety, 2022,242:113887.doi: 10.1016/j.ecoenv.2022.113887.
|