[1] |
|
|
Ma X M. Study on molecular mechanism of quality characteristics and regulation of beach mutton[D]. Lanzhou: Gansu Agricultural University, 2022.
|
[2] |
|
|
Zhou Y, Liu W P, Chen X F. Research advances on nutritional regulation of Tan sheep mutton quality[J]. Animal Husbandry and Feed Science, 2021, 42(5):51-54.
|
[3] |
|
|
Cao T, Shi L G, Xun W J, Zhou H L, Zhou X, Ji F J, Hou G Y. Main molecular factors influencing skeletal muscle development in pig and the research progress[J]. Acta Ecologae Animalis Domastici, 2022, 43(3):7-12.
|
[4] |
|
|
Jiang J, Cai B Y, Sun S W, Hou F X, Sun S Y, Song X Z. Effects of gender on body size and slaughter performance of Panshi grey geese and their correlation[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(10):68-71.
|
[5] |
|
|
Guo J F, Wang J Y, Lin H C, Shen Z Q, Dong S H, Zhou L. Effect of slaughter weight and sex on carcass performance and meat quality of Yimeng black pig[J]. Swine Production, 2022(4):45-47.
|
[6] |
|
|
Liu J, He G Z, Xu L X, Yang Z C, Gong Y. Effect of sex on the meat performance of Guanling cattle[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2016, 40(2):1-4.
|
[7] |
孟珊, 杨阳, 李睿霄, 姬梦婷, 张娜, 路畅, 蔡春波, 高鹏飞, 郭晓红, 曹果清, 李步高. lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J]. 畜牧兽医学报, 2022, 53(6):1712-1722.doi: 10.11843/j.issn.0366-6964.2022.06.006.
|
|
Meng S, Yang Y, Li R X, Ji M T, Zhang N, Lu C, Cai C B, Gao P F, Guo X H, Cao G Q, Li B G. Screening and functional study of lncRNA-6617 regulating porcine intramuscular preadipocytes differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6):1712-1722.
|
[8] |
Li Z H, Cai B L, Ali Abdalla B, Zhu X N, Zheng M, Han P G, Nie Q H, Zhang X Q. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway[J]. Journal of Cachexia,Sarcopenia and Muscle, 2019, 10(2):391-410.doi: 10.1002/jcsm.12374.
|
[9] |
Yu X H, Zhang Y, Li T T, Ma Z, Jia H X, Chen Q, Zhao Y X, Zhai L L, Zhong R, Li C Y, Zou X T, Meng J, Chen A K, Puri P L, Chen M H, Zhu D H. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD[J]. Nature Communications, 2017, 8:14016.doi: 10.1038/ncomms14016.
pmid: 28091529
|
[10] |
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2):358-369.doi: 10.1016/j.cell.2011.09.028.
pmid: 22000014
|
[11] |
|
|
Tan H Y, Liu Q, Hu D B, Zhang L L, Li X, Ding X B, Guo H, Guo Y W. Effects of interference lnc721 on proliferation and differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(9):3292-3300.
|
[12] |
|
|
Lin Z K, Zhuang X N, Luo J Y, Chen T, Xi Q Y, Zhang Y L, Sun J J. Effects of non-coding RNAs on skeletal muscle development in pigs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(10):3595-3603.
|
[13] |
叶峻宁, 邓铭, 薛慧雯, 柳广斌, 邹娴, 孙宝丽, 郭勇庆, 刘德武, 李耀坤. 影响山羊胎儿肌肉发育mRNA和lncRNA的鉴定与分析[J]. 畜牧兽医学报, 2023, 54(3):989-1002.doi: 10.11843/j.issn.0366-6964.2023.03.013.
|
|
Ye J N, Deng M, Xue H W, Liu G B, Zou X, Sun B L, Guo Y Q, Liu D W, Li Y K. Identification and analysis of mRNA and IncRNA affecting goat fetal muscle development[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):989-1002.
|
[14] |
Zhu C Y, Zheng Q, Pan Q Q, Jing J, Qin S Q, Lou M Y, Yang Y H, Wei J B, Li S, Fang F G, Liu Y, Ling Y H. Analysis of lncRNA in the skeletal muscle of rabbits at different developmental stages[J]. Frontiers in Veterinary Science, 2022, 9:948929.doi: 10.3389/fvets.2022.948929.
URL
|
[15] |
Ling Y H, Zheng Q, Sui M H, Zhu L, Xu L N, Zhang Y H, Liu Y, Fang F G, Chu M X, Ma Y H, Zhang X R. Comprehensive analysis of LncRNA reveals the temporal-specific module of goat skeletal muscle development[J]. International Journal of Molecular Sciences, 2019, 20(16):3950.doi: 10.3390/ijms20163950.
URL
|
[16] |
付洋洋. 年龄和性别对牦牛舍饲育肥效果和肉品质的影响研究[D]. 成都: 西南民族大学, 2018.
|
|
Fu Y Y. Effects of age and sex on fattening effect and meat quality of yak fed in house[D]. Chengdu: Southwest University for Nationalities, 2018.
|
[17] |
|
|
Zhang H B, Liu S J, Jin Y, Jin Z M, Yuan Q, Wang G Y. Effect of gender on slaughtering performance and carcass quality of Bamei lambs[J]. Food Science, 2014, 35(19):82-85.
|
[18] |
向程举, 蒋会梅, 张依裕, 吴磊, 舒畅, 杨远清. 织金白鹅屠宰性能与肌肉品质的相关性分析[J]. 黑龙江畜牧兽医, 2020(19):63-65.
|
|
Xiang C J, Jiang H M, Zhang Y Y, Wu L, Shu C, Yang Y. Correlation analysis between slaughtering performance and muscle quality of Zhijin white goose[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(19):63-65.
|
[19] |
|
|
Li N B. Determination of meat performance of Lubo goat lamb and analysis of its influencing factors[D]. Taian: Shandong Agricultural University, 2022.
|
[20] |
|
|
Zhao H W, Mao J B, A N G, Luo X L, An T W. Study on carcass traits of Changtai yak[J]. Hubei Agricultural Sciences, 2016, 55(18):4763-4766.
|
[21] |
Zhang C, Chen H, Zhang L, Zhao M, Guo Y, Zhang C, Lan X, Hu S. Association of polymorphisms of the GHRHR gene with growth traits in cattle (Brief report)[J]. Archives Animal Breeding, 2008, 51(3):300-301.doi: 10.5194/aab-51-300-2008.
URL
|
[22] |
Liu Y L, Lan X Y, Qu Y J, Li Z J, Chen Z Q, Lei C Z, Fang X T, Chen H. Effects of genetic variability of the dairy goat growth hormone releasing hormone receptor (GHRHR) gene on growth traits[J]. Molecular Biology Reports, 2011, 38(1):539-544.doi: 10.1007/s11033-010-0138-7.
pmid: 20354904
|
[23] |
Komati H, Naro F, Mebarek S, De Arcangelis V, Adamo S, Lagarde M, Prigent A F, Némoz G. Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton[J]. Molecular Biology of the Cell, 2005, 16(3):1232-1244.doi: 10.1091/mbc.e04-06-0459.
pmid: 15616193
|
[24] |
Yoon M S, Chen J. PLD regulates myoblast differentiation through the mTOR-IGF2 pathway[J]. Journal of Cell Science, 2008, 121(3):282-289.doi: 10.1242/jcs.022566.
URL
|
[25] |
Teng S Z, Stegner D, Chen Q, Hongu T, Hasegawa H, Chen L, Kanaho Y, Nieswandt B, Frohman M A, Huang P. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration[J]. Molecular Biology of the Cell, 2015, 26(3):506-517.doi: 10.1091/mbc.E14-03-0802.
pmid: 25428992
|
[26] |
Widlund H R, Fisher D E. Microphthalamia-associated transcription factor:a critical regulator of pigment cell development and survival[J]. Oncogene, 2003, 22(20):3035-3041.doi: 10.1038/sj.onc.1206443.
pmid: 12789278
|
[27] |
Ooishi R, Shirai M, Funaba M, Murakami M. Microphthalmia-associated transcription factor is required for mature myotube formation[J]. Biochimica et Biophysica Acta (BBA) -General Subjects, 2012, 1820(2):76-83.doi: 10.1016/j.bbagen.2011.11.005.
pmid: 22138449
|
[28] |
Feng Y R, Raza S H A, Liang C C, Wang X Y, Wang J F, Zhang W Z, Zan L S. CREB1 promotes proliferation and differentiation by mediating the transcription of CCNA2 and MYOG in bovine myoblasts[J]. International Journal of Biological Macromolecules, 2022, 216:32-41.doi: 10.1016/j.ijbiomac.2022.06.177.
URL
|
[29] |
|
|
Lü X, Zhou D A. Research progress on the effect of PI3K/AKT signaling pathway on skeletal muscle regeneration[J]. Chinese Journal of Sports Medicine, 2020, 39(11):908-912.
|
[30] |
Astratenkova I V, Rogozkin V A. Participation AMPK in the regulation of skeletal muscles metabolism[J]. Rossiiskii Fiziologicheskii Zhurnal Imeni I M Sechenova, 2013, 99(6):657-673.
|
[31] |
Chen M, Ji C Y, Yang Q C, Gao S Y, Peng Y, Li Z, Gao X Y, Li Y T, Jiang N, Zhang Y B, Bian X H, Chen C P, Zhang K D, Sanchis D, Yan F R, Ye J M. AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle[J]. Clinical Science, 2020, 134(17):2381-2398.doi: 10.1042/cs20191320.
URL
|
[32] |
Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy[J]. Journal of Molecular Medicine, 2008, 86(10):1113-1126.doi: 10.1007/s00109-008-0373-8.
URL
|
[33] |
Wang H T, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J X, Carathers M, Davuluri R, Guttridge D C. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes[J]. Molecular and Cellular Biology, 2007, 27(12):4374-4387.doi: 10.1128/MCB.02020-06.
pmid: 17438126
|
[34] |
O'Neill B T, Bhardwaj G, Penniman C M, Krumpoch M T, Suarez Beltran P A, Klaus K, Poro K, Li M Y, Pan H, Dreyfuss J M, Nair K S, Kahn C R. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy[J]. Diabetes, 2019, 68(3): 556-570. doi: 10.2337/db18-0416.
pmid: 30523026
|
[35] |
Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation:hypertrophy,metabolism,and regeneration[J]. American Journal of Physiology-Endocrinology and Metabolism, 2012, 303(1):E1-E17.doi: 10.1152/ajpendo.00555.2011.
URL
|
[36] |
Hall J E, Kaczor J J, Hettinga B P, Isfort R J, Tarnopolsky M A. Effects of a CRF2R agonist and exercise on mdx and wildtype skeletal muscle[J]. Muscle & Nerve, 2007, 36(3):336-341.doi: 10.1002/mus.20820.
|
[37] |
Hinkle R T, Donnelly E, Cody D B, Samuelsson S, Lange J S, Bauer M B, Tarnopolsky M, Sheldon R J, Coste S C, Tobar E, Stenzel-Poore M P, Isfort R J. Activation of the CRF 2 receptor modulates skeletal muscle mass under physiological and pathological conditions[J]. American Journal of Physiology-Endocrinology and Metabolism, 2003, 285(4):E889-E898.doi: 10.1152/ajpendo.00081.2003.
URL
|
[38] |
Minetti G C, Feige J N, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer A W, Kahle P, Lambert C, Glass D J, Fornaro M. Gα i2 signaling promotes skeletal muscle hypertrophy,myoblast differentiation,and muscle regeneration[J]. Science Signaling, 2011, 4(201):ra80.doi: 10.1126/scisignal.2002038.
|
[39] |
Ryall J G, Lynch G S. The potential and the pitfalls of β-adrenoceptor agonists for the management of skeletal muscle wasting[J]. Pharmacology&Therapeutics, 2008, 120(3):219-232.doi: 10.1016/j.pharmthera.2008.06.003.
|
[40] |
He H R, Yin H D, Yu X K, Zhang Y, Ma M G, Li D Y, Zhu Q. PDLIM5 affects chicken skeletal muscle satellite cell proliferation and differentiation via the p38-MAPK pathway[J]. Animals, 2021, 11(4):1016.doi: 10.3390/ani11041016.
URL
|
[41] |
Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y M, Gao C B, Ma P X, Lei B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration[J]. Biomaterials, 2018, 175:19-29.doi: 10.1016/j.biomaterials.2018.05.027.
URL
|