[1] |
Yang C Y, Zhu Y, Ding Y L, Huang Z W, Dan X G, Shi Y G, Kang X L. Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle[J]. Gene, 2022, 807:145934.doi: 10.1016/j.gene.2021.145934.
doi: 10.1016/j.gene.2021.145934
URL
|
[2] |
Nkrumah J D, Okine E K, Mathison G W, Schmid K, Li C, Basarab J A, Price M A, Wang Z, Moore S S. Relationships of feedlot feed efficiency,performance,and feeding behavior with metabolic rate,methane production,and energy partitioning in beef cattle[J]. Journal of Animal Science, 2006, 84(1):145-153.doi: 10.2527/2006.841145x.
doi: 10.2527/2006.841145x
pmid: 16361501
|
[3] |
Koch R M, Swiger L A, Chambers D, Gregory K E. Efficiency of feed use in beef cattle[J]. Journal of Animal Science, 1963, 22(2):486-494.doi: 10.2527/jas1963.222486x.
doi: 10.2527/jas1963.222486x
URL
|
[4] |
Richardson E C, Herd R M. Biological basis for variation in residual feed intake in beef cattle.2.Synthesis of results following divergent selection[J]. Australian Journal of Experimental Agriculture, 2004, 44(5):431-440.doi: 10.1071/EA02221.
doi: 10.1071/EA02221
URL
|
[5] |
Moraes G F, Abreu L R A, Toral F L B, Ferreira I C, Ventura H T, Bergmann J A G, Pereira I G. Selection for feed efficiency does not change the selection for growth and carcass traits in Nellore cattle[J]. Journal of Animal Breeding and Genetics, 2019, 136(6):464-473.doi: 10.1111/jbg.12423.
doi: 10.1111/jbg.12423
pmid: 31328836
|
[6] |
Cafe L M, Robinson D L, Ferguson D M, McIntyre B L, Geesink G H, Greenwood P L. Cattle temperament:Persistence of assessments and associations with productivity,efficiency,carcass and meat quality traits[J]. Journal of Animal Science, 2011, 89(5):1452-1465.doi: 10.2527/jas.2010-3304.
doi: 10.2527/jas.2010-3304
pmid: 21169516
|
[7] |
Basarab J A, Price M A, Aalhus J L, Okine E K, Snelling W M, Lyle K L. Residual feed intake and body composition in young growing cattle[J]. Canadian Journal of Animal Science, 2003, 83(2):189-204.doi: 10.4141/a02-065.
doi: 10.4141/a02-065
URL
|
[8] |
Nkrumah J D, Crews D H, Basarab J A, Price M A, Okine E K, Wang Z, Li C, Moore S S. Genetic and phenotypic relationships of feeding behavior and temperament with performance,feed efficiency,ultrasound,and carcass merit of beef cattle[J]. Journal of Animal Science, 2007, 85(10):2382-2390.doi: 10.2527/jas.2006-657.
doi: 10.2527/jas.2006-657
pmid: 17591713
|
[9] |
Trujillo A I, Casal A, Penagaricano F, Carriquiry M, Chilibroste P. Association of SNP of neuropeptide Y,leptin,and IGF-1 genes with residual feed intake in confinement and under grazing condition in Angus cattle[J]. Journal of Animal Science, 2013, 91(9):4235-4244.doi: 10.2527/jas.2013-6254.
doi: 10.2527/jas.2013-6254
pmid: 23881687
|
[10] |
Kelly A K, Waters S M, McGee M, Fonseca R G, Carberry C, Kenny D A. mRNA expression of genes regulating oxidative phosphorylation in the muscle of beef cattle divergently ranked on residual feed intake[J]. Physiological Genomics, 2011, 43(1):12-23.doi: 10.1152/physiolgenomics.00213.2009.
doi: 10.1152/physiolgenomics.00213.2009
pmid: 20923863
|
[11] |
Li W, Zheng M Q, Zhao G P, Wang J, Liu J, Wang S L, Feng F R, Liu D W, Zhu D, Li Q H, Guo L P, Guo Y M, Liu R R, Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers[J]. Genet Sel Evol, 2021, 53(1):13.doi: 10.1186/s12711-021-00608-3.
doi: 10.1186/s12711-021-00608-3
pmid: 33549052
|
[12] |
Li B, Fang L, Null D J, Hutchison J L, Connor E E, VanRaden P M, VandeHaar M J, Tempelman R J, Weigel K A, Cole J B. High-density genome-wide association study for residual feed intake in Holstein dairy cattle[J]. Journal of Dairy Science, 2019, 102(12):11067-11080.doi: 10.3168/jds.2019-16645.
doi: S0022-0302(19)30847-1
pmid: 31563317
|
[13] |
Zhang T, Zhang X Q, Han K P, Zhang G X, Wang J Y, Xie K Z, Xue Q, Fan X M. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken[J]. PLoS One, 2017, 12(2):e0172389.doi: 10.1371/journal.pone.0172389.
doi: 10.1371/journal.pone.0172389
URL
|
[14] |
赵丽玲, 王会, 柴志欣, 王吉坤, 王嘉博, 武志娟, 信金伟, 钟金城, 姬秋梅. 牦牛 lncFAM200B的克隆鉴定、表达及生物信息学分析[J]. 华北农学报, 2020, 35(5):220-230.doi: 10.7668/hbnxb.20191071.
doi: 10.7668/hbnxb.20191071
|
|
Zhao L L, Wang H, Chai Z X, Wang J K, Wang J B, Wu Z J, Xin J W, Zhong J C, Ji Q M. Cloning,expression and bioinformatics analysis of yak lncFAM200B[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5):220-230.
|
[15] |
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages[J]. Journal of Dairy Science, 2018, 101(12):11061-11073.doi: 10.3168/jds.2018-14900.
doi: S0022-0302(18)30892-0
pmid: 30268606
|
[16] |
Wang H, Wang X X, Li X R, Wang Q W, Qing S Z, Zhang Y, Gao M Q. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis[J]. The FEBS Journal, 2019, 286(9):1780-1795.doi: 10.1111/febs.14783.
doi: 10.1111/febs.14783
URL
|
[17] |
Sun X M, Li M X, Sun Y J, Cai H F, Lan X Y, Huang Y Z, Bai Y Y, Qi X L, Chen H. The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA,lncMD,promotes muscle differentiation by sponging miR-125b[J]. Biochimica et Biophysica Acta, 2016, 1863(11):2835-2845.doi: 10.1016/j.bbamcr.2016.08.014.
doi: 10.1016/j.bbamcr.2016.08.014
|
[18] |
Li Q L, Qiao J, Zhang Z F, Shang X L, Chu Z D, Fu Y J, Chu M X. Identification and analysis of differentially expressed long non-coding RNAs of Chinese Holstein cattle responses to heat stress[J]. Animal Biotechnology, 2020, 31(1):9-16.doi: 10.1080/10495398.2018.1521337.
doi: 10.1080/10495398.2018.1521337
pmid: 30589366
|
[19] |
Mahmoudi B, Fayazi J, Roshanfekr H, Sari M, Bakhtiarizadeh M R. Genome-wide identification and characterization of novel long non-coding RNA in ruminal tissue affected with sub-acute ruminal acidosis from Holstein cattle[J]. Veterinary Research Communications, 2020, 44(1):19-27.doi: 10.1007/s11259-020-09769-w.
doi: 10.1007/s11259-020-09769-w
pmid: 32043213
|
[20] |
Gao Y, Li S P, Lai Z Y, Zhou Z H, Wu F, Huang Y Z, Lan X Y, Lei C Z, Chen H, Dang R H. Analysis of long non-coding RNA and mRNA expression profiling in immature and mature bovine( Bos taurus)testes[J]. Frontiers in Genetics, 2019, 10:646.doi: 10.3389/fgene.2019.00646.
doi: 10.3389/fgene.2019.00646
URL
|
[21] |
Sartin J L, Whitlock B K, Daniel J A. TRIENNIAL GROWTH SYMPOSIUM:Neural regulation of feed intake:Modification by hormones,fasting,and disease[J]. Journal of Animal Science, 2011, 89(7):1991-2003.doi: 10.2527/jas.2010-3399.
doi: 10.2527/jas.2010-3399
pmid: 21148776
|
[22] |
Perkins S D, Key C N, Garrett C F, Foradori C D, Bratcher C L, Kriese-Anderson L A, Brandebourg T D. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency[J]. Journal of Animal Science, 2014, 92(2):549-560.doi: 10.2527/jas.2013-7019.
doi: 10.2527/jas.2013-7019
pmid: 24398827
|
[23] |
Richards M P, Proszkowiec-Weglarz M. Mechanisms regulating feed intake,energy expenditure,and body weight in poultry[J]. Poultry Science, 2007, 86(7):1478-1490.doi: 10.1093/ps/86.7.1478.
doi: 10.1093/ps/86.7.1478
pmid: 17575199
|
[24] |
Hou X H, Pu L, Wang L G, Liu X, Gao H M, Yan H, Zhang J S, Zhang Y B, Yue J W, Zhang L C, Wang L X. Transcriptome analysis of skeletal muscle in pigs with divergent residual feed intake phenotypes[J]. DNA and Cell Biology, 2020, 39(3):404-416.doi: 10.1089/dna.2019.4878.
doi: 10.1089/dna.2019.4878
pmid: 32004088
|
[25] |
Zhang D Y, Zhang X X, Li G Z, Li X L, Zhang Y K, Zhao Y, Song Q Z, Wang W M. Transcriptome analysis of long noncoding RNAs ribonucleic acids from the livers of Hu sheep with different residual feed intake[J]. Animal, 2021, 15(2):100098.doi: 10.1016/j.animal.2020.100098.
doi: 10.1016/j.animal.2020.100098
URL
|
[26] |
Karimi P, Bakhtiarizadeh M R, Salehi A, Izadnia H R. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken[J]. Scientific Reports, 2022, 12(1):2558.doi: 10.1038/s41598-022-06528-6.
doi: 10.1038/s41598-022-06528-6
pmid: 35169237
|
[27] |
Alexandre P A, Reverter A, Berezin R B, Porto-Neto L R, Ribeiro G, Santana M H A, Ferraz J B S, Fukumasu H. Exploring the regulatory potential of long non-coding RNA in feed efficiency of indicine cattle[J]. Genes, 2020, 11(9):E997.doi: 10.3390/genes11090997.
doi: 10.3390/genes11090997
|
[28] |
Nolte W, Weikard R, Brunner R M, Albrecht E, Hammon H M, Reverter A, Kühn C. Biological network approach for the identification of regulatory long non-coding RNAs associated with metabolic efficiency in cattle[J]. Frontiers in Genetics, 2019, 10:1130.doi: 10.3389/fgene.2019.01130.
doi: 10.3389/fgene.2019.01130
pmid: 31824560
|
[29] |
杨朝云, 康晓龙, 淡新刚, 周靖航, 卢鑫, 叶连萌, 赵国丽, 李鹏, 史远刚. 不同剩余采食量水平的安格斯牛生长性状差异性分析[J]. 西南大学学报(自然科学版), 2020, 42(2):8-14.doi: 10.13718/j.cnki.xdzk.2020.02.002.
doi: 10.13718/j.cnki.xdzk.2020.02.002
|
|
Yang C Y, Kang X L, Dan X G, Zhou J H, Lu X, Ye L M, Zhao G L, Li P, Shi Y G. Differential analysis of growth traits in Angus cattle on different levels of residual feed intake[J]. Journal of Southwest University (Natural Science), 2020, 42(2):8-14.
|
[30] |
Xiao H M, Yuan Z T, Guo D H, Hou B F, Yin C L, Zhang W Q, Li F. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens[J]. BMC Genomics, 2015, 16:749.doi: 10.1186/s12864-015-1953-y.
doi: 10.1186/s12864-015-1953-y
URL
|
[31] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT,StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9):1650-1667.doi: 10.1038/nprot.2016.095.
doi: 10.1038/nprot.2016.095
|
[32] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.doi: 10.1038/nbt.3122.
doi: 10.1038/nbt.3122
pmid: 25690850
|
[33] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515.doi: 10.1038/nbt.1621.
doi: 10.1038/nbt.1621
pmid: 20436464
|
[34] |
Sun L, Luo H T, Bu D C, Zhao G G, Yu K T, Zhang C H, Liu Y N, Chen R S, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research, 2013, 41(17):e166.doi: 10.1093/nar/gkt646.
doi: 10.1093/nar/gkt646
URL
|
[35] |
Kang Y J, Yang D C, Kong L, Hou M, Meng Y Q, Wei L P, Gao G. CPC2:A fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Research, 2017, 45(W1):W12-W16.doi: 10.1093/nar/gkx428.
doi: 10.1093/nar/gkx428
URL
|
[36] |
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam:The protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(D1):D412-D419.doi: 10.1093/nar/gkaa913.
doi: 10.1093/nar/gkaa913
pmid: 33125078
|
[37] |
Wang J B, Chai Z X, Deng L, Wang J K, Wang H, Tang Y, Zhong J C, Ji Q M. Detection and integrated analysis of lncRNA and mRNA relevant to plateau adaptation of Yak[J]. Reproduction in Domestic Animals, 2020, 55(11):1461-1469.doi: 10.1111/rda.13767.
doi: 10.1111/rda.13767
URL
|
[38] |
Wang Z B, Cotney J, Shadel G S. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression[J]. The Journal of Biological Chemistry, 2007, 282(17):12610-12618.doi: 10.1074/jbc.m700461200.
doi: 10.1074/jbc.m700461200
URL
|
[39] |
Casal A, Garcia-Roche M, Navajas E A, Cassina A, Carriquiry M. Hepatic mitochondrial function in Hereford steers with divergent residual feed intake phenotypes[J]. Journal of Animal Science, 2018, 96(10):4431-4443.doi: 10.1093/jas/sky285.
doi: 10.1093/jas/sky285
pmid: 30032298
|
[40] |
Liu X F, Ding X B, Li X, Jin C F, Yue Y W, Li G P, Guo H. An atlas and analysis of bovine skeletal muscle long noncoding RNAs[J]. Anim Genet, 2017, 48(3):278-286.doi: 10.1111/age.12539.
doi: 10.1111/age.12539
pmid: 28262958
|
[41] |
Hou Y, Hu M Y, Zhou H H, Li C C, Li X Y, Liu X D, Zhao Y X, Zhao S H. Neuronal signal transduction-involved genes in pig hypothalamus affect feed efficiency as revealed by transcriptome analysis[J]. BioMed Research International, 2018, 2018: 5862571.doi: 10.1155/2018/5862571.
doi: 10.1155/2018/5862571
|
[42] |
Xu Y Y, Qi X L, Hu M Y, Lin R Y, Hou Y, Wang Z X, Zhou H H, Zhao Y X, Luan Y, Zhao S H, Li X Y. Transcriptome analysis of adipose tissue indicates that the cAMP signaling pathway affects the feed efficiency of pigs[J]. Genes, 2018, 9(7):336.doi: 10.3390/genes9070336.
doi: 10.3390/genes9070336
URL
|
[43] |
Han S Y, Liang Y C, Li Y, Du W. Long noncoding RNA identification:Comparing machine learning based tools for long noncoding transcripts discrimination[J]. BioMed Research International, 2016, 2016:1-14.doi: 10.1155/2016/8496165.
doi: 10.1155/2016/8496165
|
[44] |
Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction[J]. Briefings in Bioinformatics, 2016, 17(1):106-116.doi: 10.1093/bib/bbv031.
doi: 10.1093/bib/bbv031
pmid: 26041786
|
[45] |
Bottje W G, Carstens G E. Association of mitochondrial function and feed efficiency in poultry and livestock speciesl[J]. Journal of Animal Sciencel, 2009, 87(S14):E48-E63.doi: 10.2527/jas.2008-1379.
doi: 10.2527/jas.2008-1379
|
[46] |
Westphal N J, Seasholtz A F. CRH-BP:The regulation and function of a phylogenetically conserved binding protein[J]. Frontiers in Bioscience, 2006, 11(2):1878-1891.doi: 10.2741/1931.
doi: 10.2741/1931
URL
|
[47] |
DiGiacomo K, Norris E, Dunshea F R, Hayes B J, Marett L C, Wales W J, Leury B J. Responses of dairy cows with divergent residual feed intake as calves to metabolic challenges during midlactation and the nonlactating period[J]. Journal of Dairy Science, 2018, 101(7):6474-6485.doi: 10.3168/jds.2017-12569.
doi: S0022-0302(18)30272-8
pmid: 29605310
|
[48] |
Sapolsky R M, Romero L M, Munck A U. How do glucocorticoids influence stress responses? Integrating permissive,suppressive,stimulatory,and preparative actions[J]. Endocrine Reviews, 2000, 21(1):55-89.doi: 10.1210/edrv.21.1.0389.
doi: 10.1210/edrv.21.1.0389
pmid: 10696570
|
[49] |
doi: 10.7668/hbnxb.2009.S1.044
|
|
Yuan Z Q, Tan Z L, Zeng J Y, Shen C C. Feed efficiency and cellular energy metabolism[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(S1):184-190.
|
[50] |
Bayir H, Kagan V E. Bench-to-bedside review:Mitochondrial injury,oxidative stress and apoptosis-there is nothing more practical than a good theory[J]. Critical Care, 2008, 12(1):206.doi: 10.1186/cc6779.
doi: 10.1186/cc6779
URL
|
[51] |
Kolath W H, Kerley M S, Golden J W, Keisler D H. The relationship between mitochondrial function and residual feed intake in Angus steers[J]. Journal of Animal Science, 2006, 84(4):861-865.doi: 10.2527/2006.844861x.
doi: 10.2527/2006.844861x
pmid: 16543563
|
[52] |
Iqbal M, Pumford N R, Tang Z X, Lassiter K, Ojano-Dirain C, Wing T, Cooper M, Bottje W. Compromised liver mitochondrial function and complex activity in low feed efficient broilers are associated with higher oxidative stress and differential protein expression[J]. Poultry Science, 2005, 84(6):933-941.doi: 10.1093/ps/84.6.933.
doi: 10.1093/ps/84.6.933
pmid: 15971533
|
[53] |
Iqbal M, Pumford N R, Tang Z X, Lassiter K, Wing T, Cooper M, Bottje W. Low feed efficient broilers within a single genetic line exhibit higher oxidative stress and protein expression in breast muscle with lower mitochondrial complex activity[J]. Poultry Science, 2004, 83(3):474-484.doi: 10.1093/ps/83.3.474.
doi: 10.1093/ps/83.3.474
pmid: 15049502
|
[54] |
doi: 10.1146/annurev.bi.65.070196.003023
pmid: 8811190
|
[55] |
Kong R S G, Liang G X, Chen Y H, Stothard P, Guan L L. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake[J]. BMC Genomics, 2016, 17:592.doi: 10.1186/s12864-016-2935-4.
doi: 10.1186/s12864-016-2935-4
pmid: 27506548
|
[56] |
Cota D, Proulx K, Smith K A B, Kozma S C, Thomas G, Woods S C, Seeley R J. Hypothalamic mTOR signaling regulates food intake[J]. Science, 2006, 312(5775):927-930.doi: 10.1126/science.1124147.
doi: 10.1126/science.1124147
pmid: 16690869
|