[1] |
Yao W, Li G W, Yu Y M, Ouyang Y D. funRiceGenes dataset for comprehensive understanding and application of rice functional genes[J]. GigaScience, 2018, 7(1):gix119.doi: 10.1093/gigascience/gix119.
doi: 10.1093/gigascience/gix119
|
[2] |
吕树伟, 江立群, 唐璇, 张静, 孙炳蕊, 刘清, 毛兴学, 于航, 吴柔贤, 范芝兰, 陈文丰, 潘大建, 李晨. 广东省水稻种质资源系统收集与鉴定评价[J]. 植物遗传资源学报, 2022, 23(2):412-421.doi: 10.13430/j.cnki.jpgr.20210907001.
doi: 10.13430/j.cnki.jpgr.20210907001
|
|
Lü S W, Jiang L Q, Tang X, Zhang J, Sun B R, Liu Q, Mao X X, Yu H, Wu R X, Fan Z L, Chen W F, Pan D J, Li C. Systematic field collection and identification and evaluation of rice germplasm resources in Guangdong Province[J]. Journal of Plant Genetic Resources, 2022, 23(2):412-421.
|
[3] |
Yang X C, Hwa C M. Genetic modification of plant architecture and variety improvement in rice[J]. Heredity, 2008, 101(5):396-404.doi: 10.1038/hdy.2008.90.
doi: 10.1038/hdy.2008.90
pmid: 18716608
|
[4] |
Sakamoto T. Phytohormones and rice crop yield:Strategies and opportunities for genetic improvement[J]. Transgenic Research, 2006, 15(4):399-404.doi: 10.1007/s11248-006-0024-1.
doi: 10.1007/s11248-006-0024-1
pmid: 16906440
|
[5] |
宋远辉, 花芹, 林泉祥, 郑思怡, 欧阳晨林, 杨晔, 孙家猛, 陈庆全, 李金才, 张海涛. 水稻穗异常突变体tutou4的鉴定及基因定位[J]. 植物遗传资源学报, 2021, 22(5):1304-1313.doi: 10.13430/j.cnki.jpgr.20210316003.
doi: 10.13430/j.cnki.jpgr.20210316003
|
|
Song Y H, Hua Q, Lin Q X, Zheng S Y, Ouyang C L, Yang Y, Sun J M, Chen Q Q, Li J C, Zhang H T. Identification and fine mapping of a panicle aberrant mutant tutou4 in rice(Oryza sativa L.)[J]. Journal of Plant Genetic Resources, 2021, 22(5):1304-1313.
|
[6] |
Yuan L P. Super-high yield hybrid rice breeding[J]. Hybrid Rice, 1997, 12:1-6.
|
[7] |
Khush G S. Green revolution:The way forward[J]. Nature Reviews Genetics, 2001, 2(10):815-822.doi: 10.1038/35093585.
doi: 10.1038/35093585
pmid: 11584298
|
[8] |
Wang X F, Goshe M B, Soderblom E J, Phinney B S, Kuchar J A, Li J, Asami T, Yoshida S, Huber S C, Clouse S D. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase[J]. The Plant Cell, 2005, 17(6):1685-1703.doi: 10.1105/tpc.105.031393.
doi: 10.1105/tpc.105.031393
URL
|
[9] |
doi: 10.1093/embo-reports/kvf177
pmid: 12223466
|
[10] |
Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice[J]. Nature, 2003, 422(6932):618-621.doi: 10.1038/nature01518.
doi: 10.1038/nature01518
|
[11] |
doi: 10.14083/j.issn.1001-4942.2016.08.001
|
|
Tian C X, Wei Q, Li X B. Cloning and expression vector construction of OsBRI1 in rice[J]. Shandong Agricultural Sciences, 2016, 48(8):1-4,9.
|
[12] |
Bajguz A. Metabolism of brassinosteroids in plants[J]. Plant Physiology and Biochemistry, 2007, 45(2):95-107.doi: 10.1016/j.plaphy.2007.01.002.
doi: 10.1016/j.plaphy.2007.01.002
pmid: 17346983
|
[13] |
Kim T W, Guan S H, Sun Y, Deng Z P, Tang W Q, Shang J X, Sun Y, Burlingame A L, Wang Z Y. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors[J]. Nature Cell Biology, 2009, 11(10):1254-1260.doi: 10.1038/ncb1970.
doi: 10.1038/ncb1970
|
[14] |
Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J]. Plant Physiology, 2006, 141(3):924-931.doi: 10.1104/pp.106.077081.
doi: 10.1104/pp.106.077081
pmid: 16714407
|
[15] |
Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the Lamina joint[J]. The Plant Cell, 2000, 12(9):1591-1606.doi: 10.1105/tpc.12.9.1591.
doi: 10.1105/tpc.12.9.1591
URL
|
[16] |
Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant,ebisu dwarf(d2),is caused by a loss of function of a new member of cytochrome P450[J]. The Plant Cell, 2003, 15(12):2900-2910.doi: 10.1105/tpc.014712.
doi: 10.1105/tpc.014712
URL
|
[17] |
Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant,defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1,is rescued by the endogenously accumulated alternative bioactive brassinosteroid,dolichosterone[J]. The Plant Cell, 2005, 17(8):2243-2254.doi: 10.1105/tpc.105.030973.
doi: 10.1105/tpc.105.030973
URL
|
[18] |
Wang X F, Kota U, He K, Blackburn K, Li J, Goshe M B, Huber S C, Clouse S D. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling[J]. Developmental Cell, 2008, 15(2):220-235.doi: 10.1016/j.devcel.2008.06.011.
doi: 10.1016/j.devcel.2008.06.011
pmid: 18694562
|
[19] |
He K, Xu S B, Li J. BAK1 directly regulates brassinosteroid perception and BRI1 activation[J]. Journal of Integrative Plant Biology, 2013, 55(12):1264-1270.doi: 10.1111/jipb.12122.
doi: 10.1111/jipb.12122
|
[20] |
Shiu S H, Bleecker A B. Plant receptor-like kinase gene family:Diversity,function,and signaling[J]. Science's STKE, 2001, 2001(113): re22.doi: 10.1126/stke.2001.113.re22.
doi: 10.1126/stke.2001.113.re22
|
[21] |
Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice( Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. The Plant Journal:for Cell and Molecular Biology, 1994, 6(2):271-282.doi: 10.1046/j.1365-313x.1994.6020271.x.
doi: 10.1046/j.1365-313x.1994.6020271.x
URL
|
[22] |
Yang C, Shen W J, He Y, Tian Z H, Li J X. Correction:OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice[J]. PLoS Genetics, 2016, 13(8):e1006970.doi: 10.1371/journal.pgen.1006970.
doi: 10.1371/journal.pgen.1006970
URL
|
[23] |
Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1):107-117.doi: 10.1007/s00425-005-1534-4.
doi: 10.1007/s00425-005-1534-4
pmid: 15968510
|
[24] |
Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal, 2009, 7(8):791-806.doi: 10.1111/j.1467-7652.2009.00444.x.
doi: 10.1111/j.1467-7652.2009.00444.x
URL
|
[25] |
Li J, Wen J Q, Lease K A, Doke J T, Tax F E, Walker J C. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.doi: 10.1016/S0092-8674(02)00812-7.
doi: 10.1016/S0092-8674(02)00812-7
URL
|
[26] |
Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3,in rice[J]. Plant Physiology, 2006, 140(2):580-590.doi: 10.1104/pp.105.072330.
doi: 10.1104/pp.105.072330
pmid: 16407447
|
[27] |
Yuan H, Fan S J, Huang J, Zhan S J, Wang S F, Gao P, Chen W L, Tu B, Ma B T, Wang Y P, Qin P, Li S G. 08SG2/OsBAK1 regulates grain size and number,and functions differently in Indica and Japonica backgrounds in rice[J]. Rice, 2017, 10(1):25.doi: 10.1186/s12284-017-0165-2.
doi: 10.1186/s12284-017-0165-2
|
[28] |
Park H S, Ryu H Y, Kim B H, Kim S Y, Yoon I S, Nam K H. A subset of OsSERK genes,including OsBAK1,affects normal growth and leaf development of rice[J]. Molecules and Cells, 2011, 32(6):561-569.doi: 10.1007/s10059-011-0178-4.
doi: 10.1007/s10059-011-0178-4
pmid: 22058019
|
[29] |
Koh S, Lee S C, Kim M K, Koh J H, Lee S, An G, Choe S, Kim S R. T-DNA tagged knockout mutation of rice OsGSK1,an orthologue of Arabidopsis BIN2,with enhanced tolerance to various abiotic stresses[J]. Plant Molecular Biology, 2007, 65(4):453-466.doi: 10.1007/s11103-007-9213-4.
doi: 10.1007/s11103-007-9213-4
URL
|