[1] |
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding:Progress and perspectives[J]. Molecular Plant, 2019, 12(3):321-342.doi: 10.1016/j.molp.2019.01.014.
doi: 10.1016/j.molp.2019.01.014
URL
|
[2] |
Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era[J]. Molecular Plant, 2021, 14(4):531-534.doi: 10.1016/j.molp.2021.02.004.
doi: 10.1016/j.molp.2021.02.004
pmid: 33582376
|
[3] |
Wilson Z A, Zhang D B. From Arabidopsis to rice:Pathways in pollen development[J]. Journal of Experimental Botany, 2009, 60(5):1479-1492.doi: 10.1093/jxb/erp095.
doi: 10.1093/jxb/erp095
pmid: 19321648
|
[4] |
Chaubal R, Anderson J R, Trimnell M R, Fox T W, Albertsen M C, Bedinger P. The transformation of anthers in the msca1 mutant of maize[J]. Planta, 2003, 216(5):778-788.doi: 10.1007/s00425-002-0929-8.
doi: 10.1007/s00425-002-0929-8
pmid: 12624765
|
[5] |
Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, Liu X Z, Zhang S W, He W, Li F, Li J P, Wan X Y. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants[J]. Plant Biotechnology Journal, 2021, 19(9):1769-1784.doi: 10.1111/pbi.13590.
doi: 10.1111/pbi.13590
pmid: 33772993
|
[6] |
Nan G L, Zhai J X, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V. MS23,a master basic helix-loop-helix factor,regulates the specification and development of the tapetum in maize[J]. Development, 2017, 144(1):163-172.doi: 10.1242/dev.140673.
doi: 10.1242/dev.140673
|
[7] |
Wang C J R, Nan G L, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya I N, Harper L, Egger R, Walbot V, Cande W Z. Maize multiple archesporial cells 1( mac1),an ortholog of rice TDL1A,modulates cell proliferation and identity in early anther development[J]. Development, 2012, 139(14):2594-2603.doi: 10.1242/dev.077891.
doi: 10.1242/dev.077891
URL
|
[8] |
Vernoud V, Laigle G, Rozier F, Meeley R B, Perez P, Rogowsky P M. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize[J]. The Plant Journal, 2009, 59(6):883-894.doi: 10.1111/j.1365-313X.2009.03916.x.
doi: 10.1111/j.1365-313X.2009.03916.x
pmid: 19453441
|
[9] |
Moon J, Skibbe D, Timofejeva L, Wang C J R, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize[J]. The Plant Journal, 2013, 76(4):592-602.doi: 10.1111/tpj.12318.
doi: 10.1111/tpj.12318
pmid: 24033746
|
[10] |
Zhang L, Luo H B, Zhao Y, Chen X Y, Huang Y M, Yan S S, Li S X, Liu M S, Huang W, Zhang X L, Jin W W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development[J]. BMC Plant Biology, 2018, 18(1):318.doi: 10.1186/s12870-018-1543-7.
doi: 10.1186/s12870-018-1543-7
pmid: 30509161
|
[11] |
Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility33 ( ZmMs33)gene,encoding a glycerol-3-phosphate acyltransferase[J]. Theoretical and Applied Genetics, 2018, 131(6):1363-1378.doi: 10.1007/s00122-018-3083-9.
doi: 10.1007/s00122-018-3083-9
pmid: 29546443
|
[12] |
Zhu T T, Wu S W, Zhang D F, Li Z W, Xie K, An X L, Ma B, Hou Q C, Dong Z Y, Tian Y H, Li J P, Wan X Y. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene[J]. Theoretical and Applied Genetics, 2019, 132(7):2137-2154.doi: 10.1007/s00122-019-03343-y.
doi: 10.1007/s00122-019-03343-y
|
[13] |
Huo Y Q, Pei Y R, Tian Y H, Zhang Z G, Li K, Liu J, Xiao S L, Chen H B, Liu J. IRREGULAR POLLEN EXINE2 encodes a GDSL lipase essential for male fertility in maize[J]. Plant Physiology, 2020, 184(3):1438-1454.doi: 10.1104/pp.20.00105.
doi: 10.1104/pp.20.00105
URL
|
[14] |
Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor[J]. Plant Biotechnology Journal, 2018, 16(2):459-471.doi: 10.1111/pbi.12786.
doi: 10.1111/pbi.12786
URL
|
[15] |
An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38):23499-23509.doi: 10.1073/pnas.2010255117.
doi: 10.1073/pnas.2010255117
|
[16] |
Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1(APV1)is required for male fertility by contributing to anther cuticle and pollen exine formation in maize[J]. The Plant Journal, 2017, 90(1):96-110.doi: 10.1111/tpj.13476.
doi: 10.1111/tpj.13476
pmid: 28078801
|
[17] |
Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, Li S, Chen H B, Jin W W. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation[J]. Plant Physiology, 2017, 173(1):307-325.doi: 10.1104/pp.16.00629.
doi: 10.1104/pp.16.00629
pmid: 28049856
|
[18] |
Wang Y B, Liu D C, Tian Y H, Wu S W, An X L, Dong Z Y, Zhang S M, Bao J X, Li Z W, Li J P, Wan X Y. Map-based cloning,phylogenetic,and microsynteny analyses of ZmMs20 gene regulating male fertility in maize[J]. International Journal of Molecular Sciences, 2019, 20(6):1411.doi: 10.3390/ijms20061411.
doi: 10.3390/ijms20061411
URL
|
[19] |
Xu Q L, Yang L, Kang D, Ren Z J, Liu Y J. Maize MS2 encodes an ATP-binding cassette transporter that is essential for anther development[J]. The Crop Journal, 2021, 9(6):1301-1308.doi: 10.1016/j.cj.2021.04.001.
doi: 10.1016/j.cj.2021.04.001
URL
|
[20] |
Jiang Y L, Li Z W, Liu X Z, Zhu T T, Xie K, Hou Q C, Yan T W, Niu C F, Zhang S W, Yang M B, Xie R R, Wang J, Li J P, An X L, Wan X Y. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther[J]. International Journal of Molecular Sciences, 2021, 22(15):7916.doi: 10.3390/ijms22157916.
doi: 10.3390/ijms22157916
URL
|
[21] |
Cigan A M, Unger E, Xu R J, Kendall T, Fox T W. Phenotypic complementation of ms45 maize requires tapetal expression of MS45[J]. Sexual Plant Reproduction, 2001, 14:135-142.doi: 10.1007/s004970100099.
doi: 10.1007/s004970100099
URL
|
[22] |
Tian Y H, Xiao S L, Liu J, Somaratne Y, Zhang H, Wang M M, Zhang H R, Zhao L, Chen H B. MALE STERILE6021(MS6021)is required for the development of anther cuticle and pollen exine in maize[J]. Scientific Reports, 2017, 7(1):16736.doi: 10.1038/s41598-017-16930-0.
doi: 10.1038/s41598-017-16930-0
|
[23] |
Zhang S M, Wu S W, Niu C F, Liu D C, Yan T W, Tian Y H, Liu S S, Xie K, Li Z W, Wang Y B, Zhao W, Dong Z Y, Zhu T T, Hou Q C, Ma B, An X L, Li J P, Wan X Y. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize[J]. Journal of Experimental Botany, 2021, 72(12):4298-4318.doi: 10.1093/jxb/erab142.
doi: 10.1093/jxb/erab142
URL
|
[24] |
An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, Hou Q C, Bao J X, Zhang S M, Li Z W, Wang Y B, Yan T W, Sun X J, Zhang Y W, Li J P, Wan X Y. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize[J]. Molecular Plant, 2019, 12(3):343-359.doi: 10.1016/j.molp.2019.01.011.
doi: 10.1016/j.molp.2019.01.011
URL
|
[25] |
Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B L, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize[J]. Plant Biotechnology Journal, 2017, 15(8):942-952.doi: 10.1111/pbi.12689.
doi: 10.1111/pbi.12689
URL
|
[26] |
Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Lyznik L A. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene( MS26)using a re-designed I- CreI homing endonuclease[J]. The Plant Journal, 2013, 76(5):888-899.doi: 10.1111/tpj.12335.
doi: 10.1111/tpj.12335
pmid: 24112765
|
[27] |
Zhu T T, Li Z W, An X L, Long Y, Xue X F, Xie K, Ma B, Zhang D F, Guan Y J, Niu C F, Dong Z Y, Hou Q C, Zhao L N, Wu S W, Li J P, Jin W W, Wan X Y. Normal structure and function of endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize[J]. Molecular Plant, 2020, 13(11):1624-1643.doi: 10.1016/j.molp.2020.09.013.
doi: 10.1016/j.molp.2020.09.013
pmid: 32956899
|
[28] |
Men X, Shi J X, Liang W Q, Zhang Q F, Lian G B, Quan S, Zhu L, Luo Z J, Chen M J, Zhang D B. Glycerol-3-Phosphate Acyltransferase 3(OsGPAT3)is required for anther development and male fertility in rice[J]. Journal of Experimental Botany, 2017, 68(3):513-526.doi: 10.1093/jxb/erw445.
doi: 10.1093/jxb/erw445
|
[29] |
Sun L P, Xiang X J, Yang Z F, Yu P, Wen X X, Wang H, Abbas A, Muhammad Khan R M, Zhang Y X, Cheng S H, Cao L Y. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice[J]. International Journal of Molecular Sciences, 2018, 19(12):4017.doi: 10.3390/ijms19124017.
doi: 10.3390/ijms19124017
URL
|
[30] |
|
|
Wang B M, Chen Y Z, Li H B, Mo H, Huang L B. Progress of mechanism of male sterility of plants and its application[J]. Journal of Henan Agricultural Sciences, 2019, 48(5):1-9.
|
[31] |
doi: 10.13523/j.cb.20180114
|
|
Fu Z Y, Qin Y T, Tang J H. Reviews of photo-or/and thermo-sensitive genic male sterile gene in major crops[J]. China Biotechnology, 2018, 38(1):115-125.
|
[32] |
doi: 10.5376/mpb.cn.2012.10.0001
|
|
Wu S W, Fang C C, Deng L W, Wan X Y. Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program[J]. Molecular Plant Breeding, 2012, 10(1):1001-1011.
|
[33] |
doi: 10.7668/hbnxb.2018.01.009
|
|
Gao S, Lü Q X, He H, Zhang J X, Zhang Z J, Song G S, Liu W. Bioinformatics analysis of ZmUdt1 gene in maize tapetum development[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1):52-59.
|
[34] |
Zhang D B, Yang L. Specification of tapetum and microsporocyte cells within the anther[J]. Current Opinion in Plant Biology, 2014, 17:49-55.doi: 10.1016/j.pbi.2013.11.001.
doi: 10.1016/j.pbi.2013.11.001
pmid: 24507494
|
[35] |
Al Mamun E, Cantrill L C, Overall R L, Sutton B G. Cellular organisation in meiotic and early post-meiotic rice anthers[J]. Cell Biology International, 2005, 29(11):903-913.doi: 10.1016/j.cellbi.2005.08.001.
doi: 10.1016/j.cellbi.2005.08.001
pmid: 16198129
|
[36] |
Murphy K M, Egger R L, Walbot V. Chloroplasts in anther endothecium of Zea mays(Poaceae)[J]. American Journal of Botany, 2015, 102(11):1931-1937.doi: 10.3732/ajb.1500384.
doi: 10.3732/ajb.1500384
URL
|
[37] |
Liu X Q, Yu C Y, Dong J G, Hu S W, Xu A X. Acetolactate synthase-inhibiting gametocide amidosulfuron causes chloroplast destruction,tissue autophagy,and elevation of ethylene release in rapeseed[J]. Frontiers in Plant Science, 2017, 8:1625.doi: 10.3389/fpls.2017.01625.
doi: 10.3389/fpls.2017.01625
URL
|