[1] |
doi: 10.3969/j.issn.1000-1700.2017.02.004
|
|
Wei Q R, Cao M J, Shi Y, Chen B C, Zhang L L. Effects of nitrogen fertilizer application rate on growth,development and quality in potato[J]. Journal of Shenyang Agricultural University, 2017, 48(2):152-158.
|
[2] |
doi: 10.27229/d.cnki.gnmnu.2020.000011
|
|
Zhang T T. Research on physiological response and differential gene expression of high-efficient nitrogen utilization in potato[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[3] |
doi: 10.27409/d.cnki.gxbnu.2019.000006
|
|
Zhang Y Y. Study on detoxification of main potato varieties in Yulin area[D]. Yangling: Northwest A&F University, 2019.
|
[4] |
doi: 10.13592/j.cnki.ppj.2020.0445
|
|
Lu X L, Duan Y X, Li S S, Yue H, Wu J R, Liu J H, Kang J H. Effect of film mulching on potato physiological characters and production in semi-arid area[J]. Plant Physiology Journal, 2021, 57(7):1582-1594.
|
[5] |
doi: 10.13430/j.cnki.jpgr.20180908002
|
|
Qin J H, Zhang T T, Meng L L, Xu J F, Meng M L, Jin L P. Evaluation of drought tolerance in exotic potato germplasm[J]. Journal of Plant Genetic Resources, 2019, 20(3):574-582.
|
[6] |
武新娟, 唐贵, 隋冬华, 张冬雪, 孙晶, 张静华, 张鹍, 宋鹏慧, 吴雨蹊. 20个马铃薯品种抗旱性鉴定及评价指标筛选[J]. 中国瓜菜, 2021, 34(3):47-51.doi: 10.16861/j.cnki.zggc.2021.0058.
doi: 10.16861/j.cnki.zggc.2021.0058
|
|
Wu X J, Tang G, Sui D H, Zhang D X, Sun J, Zhang J H, Zhang K, Song P H, Wu Y X. Evaluation index selection and drought resistance identification of 20 potato varieties[J]. China Cucurbits and Vegetables, 2021, 34(3):47-51.
|
[7] |
Zheng J C, Cheng X B, Hoffmann A A, Zhang B, Ma C S. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?[J]. J Insect Physiol, 2017, 102:36-41.doi: 10.1016/j.jinsphys.2017.09.004.
doi: S0022-1910(17)30154-3
pmid: 28899752
|
[8] |
Li J R, Liu C C, Sun C H, Chen Y T. Plant stress RNA-seq Nexus:A stress-specific transcriptome database in plant cells[J]. BMC Genomics, 2018, 19(1):966.doi: 10.1186/s12864-018-5367-5.
doi: 10.1186/s12864-018-5367-5
|
[9] |
doi: 10.13522/j.cnki.ggps.20180444
|
|
Wang X J, Meng M L, Cao C M, Lu C X, Xu F. Response of roots of potato at seedling stage to water stress[J]. Journal of Irrigation and Drainage, 2019, 38(5):12-18.
|
[10] |
doi: 10.27025/d.cnki.ggsnu.2020.000177
|
|
Han T Q. Excavation of Aux/IAA transcription factors in potato roots under drought stress[D]. Lanzhou: Gansu Agricultural University, 2020.
|
[11] |
doi: 10.26914/c.cnkihy.2021.013206
|
|
Qin T Y, Xu D R, Wang Y H, Sun C, Bi Z Z, Liu Y H, Zhang J L, Bai J P. Comparative transcriptome analysis of potato cultivars with different root length genotypes under drought stress[C]. Potato Industry and Green Development, 2021:267-268.
|
[12] |
doi: 10.27025/d.cnki.ggsnu.2020
|
|
Qin T Y. Difference analysis of physiology,biochemistry and transcriptome between potato varieties C119 and C16 under drought stress[D]. Lanzhou: Gansu Agricultural University, 2020.
|
[13] |
doi: 10.3864/j.issn.0578-1752.2018.17.002
|
|
Ye M W, Zhang C Z, Huang S W. Construction of high efficient genetic transformation system for diploid potatoes[J]. Scientia Agricultura Sinica, 2018, 51(17):3249-3257.
doi: 10.3864/j.issn.0578-1752.2018.17.002
|
[14] |
doi: 10.3969/j.issn.1672-3635.2004.06.004
|
|
Zhao M H, Bai Y M, Qiu C L, Li Y, Lü W H. Difference of main quality traits between diploid and tetraploid cultivated potatoes[J]. Chinese Potato, 2004, 18(6):333-337.
|
[15] |
doi: 10.26914/c.cnkihy.2020.018931
|
|
Jian Y Q, Li G C, Duan S G, Xu J F, Pang W F, Jin L P. Research progress of potato dihaploid production[C]. Potato Industry and Beautiful Countryside, 2020:186-190.
|
[16] |
doi: 10.27461/d.cnki.gzjdx.2020.000340
|
|
Li C X. Functional study of receptor-like kinase RLKx and transcription factor WRKY47 in Al resistance in Arabidopsis thaliana[D]. Hangzhou: Zhejiang University, 2020.
|
[17] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor(AP2/ERF)transcription factors:mediators of stress responses and developmental programs[J]. The New Phytologist, 2013, 199(3):639-649.doi: 10.1111/nph.12291.
doi: 10.1111/nph.12291
URL
|
[18] |
Zhang L H, You J, Chan Z L. Identification and characterization of TIFY family genes in Brachypodium distachyon[J]. Journal of Plant Research, 2015, 128(6):995-1005.doi: 10.1007/s10265-015-0755-2.
doi: 10.1007/s10265-015-0755-2
URL
|
[19] |
doi: 10.3969/j.issn.1000-4440.2016.05.004
|
|
Jiang Z N, Bie T D, Zhao R H, Gao D R, Wu X J, Zhang B Q. Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 980-986.
|
[20] |
doi: 10.13570/j.cnki.scc.2018.06.003
|
|
Duanmu H Z, Niu Z X, Li H Y. Genome-wide identification of the STPK family and protein-protein interaction network analysis in sugar beet[J]. Sugar Crops of China, 2018, 40(6):8-10.
|
[21] |
doi: 10.3969/j.issn.1000-4025.2012.05.032
|
|
Pei L L, Guo Y H, Xu Z S, Li L C, Chen M, Ma Y Z. Research progress on stress-related protein kinases in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5):1052-1061.
|
[22] |
Rudrabhatla P, Rajasekharan R. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses[J]. Plant Physiology, 2002, 130(1):380-390.doi: 10.1104/pp.005173.
doi: 10.1104/pp.005173
pmid: 12226517
|
[23] |
Rudrabhatla P, Rajasekharan R. Mutational analysis of stress-responsive peanut dual specificity kinase[J]. J Biol Chem, 2003, 278(19):17328-17335.doi: 10.1074/jbc.M300024200.
doi: 10.1074/jbc.M300024200
pmid: 12624102
|
[24] |
doi: 10.27123/d.cnki.ghlju.2016
|
|
Zhang Y X. Study on phosphorylation functional sites of BvM14-STPK protein in sugarbeet M14 strain in response to salt stress[D]. Harbin: Helongjiang University, 2016.
|
[25] |
doi: 10.7668/hbnxb.2013.S1.040
|
|
Liu J G, Wang Y Q, Zhang H S, Zhao J L, Guo X, Meng X P. Research progress of ERF transcription factors in plant biotic and abiotic stress responses[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1): 214-218.
|
[26] |
doi: 10.27162/d.cnki.gjlin.2021
|
|
Li H P. Functional analysis of AP21ERP transcription factor SlERF.F4 in fruit ripening and response to drought stress[D]. Changchun: Jilin University, 2021.
|
[27] |
Xie Z L, Nolan T M, Jiang H, Yin Y H. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci, 2019, 10:228.doi: 10.3389/fpls.2019.00228.
doi: 10.3389/fpls.2019.00228
URL
|
[28] |
Zhang G Y, Chen M, Chen X P, Xu Z S, Guan S, Li L C, Li A L, Guo J M, Mao L, Ma Y Z. Phylogeny,gene structures,and expression patterns of the ERF gene family in soybean( Glycine max L.)[J]. Journal of Experimental Botany, 2008, 59(15):4095-4107.doi: 10.1093/jxb/ern248.
doi: 10.1093/jxb/ern248
URL
|
[29] |
He X, Kang Y, Li W Q, Liu W, Xie P, Liao L, Huang L Y, Yao M, Qian L W, Liu Z S, Guan C Y, Guan M, Hua W. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L.[J]. BMC Genomics, 2020, 21(1):736.doi: 10.1186/s12864-020-07128-2.
doi: 10.1186/s12864-020-07128-2
|
[30] |
doi: 10.16420/j.issn.0513-353x.2020-0850
|
|
Xie S Y, Zhou C Z, Zhu C, Zhan D M, Chen L, Wu Z C, Lai Z X, Guo Y Q. Genome-wide identification and expression analysis of CsTIFY transcription factor family under abiotic stress and hormone treatments in Camellia sinensis[J]. Acta Horticulturae Sinica, 2022, 49(1):100-116.
|
[31] |
Ye H Y, Du H Y, Tang N, Li X H, Xiong L Z. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3):291-305.doi: 10.1007/s11103-009-9524-8.
doi: 10.1007/s11103-009-9524-8
pmid: 19618278
|
[32] |
doi: 10.3969/j.issn.1674-7968.2017.06.015
|
|
Huang X Z, Zeng X F, Li J R, Zhao D G. Construction and analysis of tify1a and tify1b mutants in rice(Oryza sativa)based on CRISPR/Cas9 technology[J]. Journal of Agricultural Biotechnology, 2017, 25(6):1003-1012.
|