[1] |
Kim O K, Ishikawa T, Yamada Y, Sato T, Shinohara H, Takahata K. Incidence of pests and viral disease on pepino( Solanum muricatum Ait.)in Kanagawa Prefecture,Japan[J]. Biodiversity Data Journal, 2017, 5(5):e14879.doi: 10.3897/bdj.5.e14879.
doi: 10.3897/bdj.5.e14879
URL
|
[2] |
Gurung S, Chakravarty S, Chhetri B, Khawas T. An introduction to pepino( Solanum muricatum aiton):Review[J]. International Journal of Environment,Agriculture and Biotechnology, 2016, 1(2):143-148.doi: 10.22161/ijeab/1.2.8.
doi: 10.22161/ijeab/1.2.8
URL
|
[3] |
Ashok K, Tarun A, Rajan S. Pepino( Solanum muricatum Ait.):A potential future crop for subtropics[J]. Tropical Plant Research, 2017, 4(3):514-517.doi: 10.22271/tpr.2017.v4.i3.067.
doi: 10.22271/tpr.2017.v4.i3.067
URL
|
[4] |
Wang N, Wang L Y, Wang Z H, Cheng L X, Wang J X. Solanum muricatum ameliorates the symptoms of osteogenesis imperfecta in vivo[J]. Journal of Food Science, 2019, 84(6):1646-1650.doi: 10.1111/1750-3841.14637.
doi: 10.1111/1750-3841.14637
pmid: 31116433
|
[5] |
Pacheco J, Plazas M, Pettinari I, Landa-Faz A, González-Orenga S, Boscaiu M, Soler S, Prohens J, Vicente O, Gramazio P. Moderate and severe water stress effects on morphological and biochemical traits in a set of pepino( Solanum muricatum)cultivars[J]. Scientia Horticulturae, 2021, 284(2):110143.doi: 10.1016/j.scienta.2021.110143.
doi: 10.1016/j.scienta.2021.110143
URL
|
[6] |
Yang T R, Hu J G, Yu Y T, Li G K, Guo X B, Li T, Liu R H. Comparison of phenolics,flavonoids,and cellular antioxidant activities in ear sections of sweet corn( Zea mays L. saccharata Sturt)[J]. Journal of Food Processing and Preservation, 2019, 43(1):e13855.doi: 10.1111/jfpp.13855.
doi: 10.1111/jfpp.13855
URL
|
[7] |
Ji Y B, Guo S Z, Wang B, Yu M. Extraction and determination of flavonoids in Carthamus tinctorius[J]. Open Chemistry, 2018, 16(1):1129-1133.doi: 10.1515/chem-2018-0119.
doi: 10.1515/chem-2018-0119
URL
|
[8] |
Mizzi L, Chatzitzika C, Gatt R, Valdramidis V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks[J]. Food Technology and Biotechnology, 2020, 58(1):12-19.doi: 10.17113/ftb.58.01.20.6395.
doi: 10.17113/ftb.58.01.20.6395
pmid: 32684783
|
[9] |
Özcan M M, Al Juhaimi F, Mohamed Ahmed I A, Uslu N, Babiker E E, Ghafoor K. Effect of microwave and oven drying processes on antioxidant activity,total phenol and phenolic compounds of kiwi and pepino fruits[J]. Journal of Food Science and Technology, 2020, 57(1):233-242.doi: 10.1007/s13197-019-04052-6.
doi: 10.1007/s13197-019-04052-6
|
[10] |
许倩倩. 香瓜茄有效成分分离纯化及其活性研究[D]. 上海: 上海海洋大学, 2018.
|
|
Xu Q Q. Study on the separation and activity of active components from Solanum muricatum[D]. Shanghai: Shanghai Ocean University, 2018.
|
[11] |
Sarker U, Oba S. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus[J]. BMC Plant Biol, 2020, 20(1):499.doi: 10.1186/s12870-020-02700-0.
doi: 10.1186/s12870-020-02700-0
|
[12] |
Tohge T, de Souza L P, Fernie A R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants[J]. Journal of Experimental Botany, 2017, 68(15):4013-4028.doi: 10.1093/jxb/erx177.
doi: 10.1093/jxb/erx177
pmid: 28922752
|
[13] |
Sudha G, Priya M S, Shree R B I, Vadivukkarasi S. Antioxidant activity of ripe and unripe pepino fruit( Solanum muricatum Aiton)[J]. Journal of Food Science, 2012, 77(11):C1131-C1135.doi: 10.1111/j.1750-3841.2012.02944.x.
doi: 10.1111/j.1750-3841.2012.02944.x
|
[14] |
Nabavi S M, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J B, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi S F, Yousefi B, Jeandet P, Xu S W, Shirooie S. Flavonoid biosynthetic pathways in plants:Versatile targets for metabolic engineering[J]. Biotechnology Advances, 2020, 38:107316.doi: 10.1016/j.biotechadv.2018.11.005.
doi: 10.1016/j.biotechadv.2018.11.005
URL
|
[15] |
Barros J, Serrani-Yarce J C, Chen F, Baxter D, Venables B J, Dixon R A. Role of bifunctional ammonia lyase in grass cell wall biosynthesis[J]. Nature Plants, 2016, 2(6):16050.doi: 10.1038/nplants.2016.50.
doi: 10.1038/nplants.2016.50
pmid: 27255834
|
[16] |
Zhao C Y, Wang F, Lian Y H, Xiao H, Zheng J K. Biosynthesis of citrus flavonoids and their health effects[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(4):566-583.doi: 10.1080/10408398.2018.1544885.
doi: 10.1080/10408398.2018.1544885
pmid: 30580548
|
[17] |
Lim I, Ha J. Biosynthetic pathway of proanthocyanidins in major cash crops[J]. Plants, 2021, 10(9):1792.doi: 10.3390/plants10091792.
doi: 10.3390/plants10091792
URL
|
[18] |
Milani A, Jouki M, Rabbani M. Production and characterization of freeze-dried banana slices pretreated with ascorbic acid and quince seed mucilage:Physical and functional properties[J]. Food Sci Nutr, 2020, 8(7):3768-3776.doi: 10.1002/fsn3.1666.
doi: 10.1002/fsn3.1666
URL
|
[19] |
doi: 10.11869/j.issn.100-8551.2014.04.0662
|
|
Zhou M, Li M, Ding X H, Li X M, Chu Z H. Determination of flavonoids and caffeoylguinic acids from tomato varieties and correlation analysis with the antioxidant activity[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(4):662-669.
|
[20] |
doi: 10.13592/j.cnki.ppj.2017.0191
|
|
Liu S J, Meng M L, Chen Y J. Effects of drought stress and rehydration on gene expression of key enzymes in the flavonoid biosynthesis pathway in potato[J]. Plant Physiology Journal, 2018, 54(1):81-91.
|
[21] |
陈帅. 烟草类黄酮代谢途径中关键酶CHS基因与R2R3 MYB类转录抑制因子功能研究[D]. 雅安: 四川农业大学, 2017.
|
|
Chen S. Functional analysis of CHS genes and R2R3 MYB repressors related to flavonoid biosynthesis pathway in Nicotiana tabacum[D]. Yaan: Sichuan Agricultural University, 2017.
|
[22] |
doi: 10.7606/j.issn.1009-1041.2021.07.08
|
|
Yan L F, Yang X M, Du J, Sun Z H, Pu X Y, Yang J Z, Zeng Y W. QTL mapping and analysis of phenylalanine content in barley grains[J]. Journal of Triticeae Crops, 2021, 41(7):851-856.
|
[23] |
Qian Y C, Lynch J H, Guo L Y, Rhodes D, Morgan J A, Dudareva N. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants[J]. Nature Communications, 2019, 10(1):15.doi: 10.1038/s41467-018-07969-2.
doi: 10.1038/s41467-018-07969-2
pmid: 30604768
|
[24] |
doi: 10.7668/hbnxb.2018.06.009
|
|
Chen M, Zhang X, Zhang Y, Yang M H, Liu H F. Cloning and expression analysis of phenylalanine (PAL) gene in Vitis amurensis[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 64-71.
|
[25] |
doi: 10.11841/j.issn.1007-4333.2017.12.08
|
|
Qiao F, Geng G G, Zhang L, Jin L, Chen Z. Molecular cloning and expression patterns of LcPAL from Lycium chinense[J]. Journal of China Agricultural University, 2017, 22(12):64-73.
|
[26] |
Ruwizhi N, Aderibigbe B A. Cinnamic acid derivatives and their biological efficacy[J]. International Journal of Molecular Sciences, 2020, 21(16):5712.doi: 10.3390/ijms21165712.
doi: 10.3390/ijms21165712
URL
|
[27] |
Yilmaz S, Sova M, Ergün S. Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates[J]. Journal of Applied Microbiology, 2018, 125(6):1714-1727.doi: 10.1111/jam.14097.
doi: 10.1111/jam.14097
URL
|
[28] |
Eloy N B, Voorend W, Lan W, Saleme M L, Cesarino I, Vanholme R, Smith R A, Goeminne G, Pallidis A, Morreel K, Nicomedes J, Ralph J, Boerjan W. Silencing CHALCONE SYNTHASE in maize impedes the incorporation of tricin into lignin and increases lignin content[J]. Plant Physiology, 2017, 173(2):998-1016.doi: 10.1104/pp.16.01108.
doi: 10.1104/pp.16.01108
pmid: 27940492
|
[29] |
Lin C Y, Wang J P, Li Q Z, Chen H C, Liu J, Loziuk P, Song J N, Williams C, Muddiman D C, Sederoff R R, Chiang V L. 4-coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:Coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa[J]. Molecular Plant, 2015, 8(1):176-187.doi: 10.1016/j.molp.2014.12.003.
doi: 10.1016/j.molp.2014.12.003
URL
|
[30] |
Kaur R, Aslam L, Kapoor N, Mahajan R. Identification and comparative expression analysis of chalcone synthase,flavanone 3-hydroxylase and dihydroflavonol 4-reductase genes in wild pomegranate( Punica granatum L.)organs[J]. Brazilian Journal of Botany, 2020, 43(4):883-896.doi: 10.1007/s40415-020-00648-x.
doi: 10.1007/s40415-020-00648-x
|
[31] |
李永华, 蒲天珍, 周佩娜, 方佳慧, 张秀桥, 龚玲. 大叶蛇葡萄类黄酮-3'-羟化酶基因(F3'H)的克隆及生物信息学分析[J]. 分子植物育种, 2021, 19(18):5984-5993.doi: 10.13271/j.mpb.019.005984.
doi: 10.13271/j.mpb.019.005984
|
|
Li Y H, Pu T Z, Zhou P N, Fang J H, Zhang X Q, Gong L. Cloning and bioinformatics analysis of flavonoid-3'-hydroxylase(F3'H)gene in Aampelopsis megalophylla[J]. Molecular Plant Breeding, 2021, 19(18):5984-5993.
|
[32] |
Zhao X Q, Yuan Z H, Feng L J, Fang Y M. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate[J]. Journal of Plant Research, 2015, 128(4):687-696.doi: 10.1007/s10265-015-0717-8.
doi: 10.1007/s10265-015-0717-8
pmid: 25810223
|