[1] |
叶洪洋洋. 杭州市蔬菜硝酸盐变化规律及膳食暴露评估初步研究[D]. 杭州: 浙江农林大学, 2018.
|
|
Ye H Y Y. Study on the variation of nitrate in vegetables and the evaluation of dietary exposure in Hangzhou[D]. Hangzhou: Zhejiang A&F University, 2018.
|
[2] |
doi: 10.14070/j.cnki.15-1098.2018.05.081
|
|
Te R G L, Zheng H C. Effects of different fertilization rates on the yield and quality of celery[J]. Modern Agriculture, 2018(5): 100-102.
|
[3] |
Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed N A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants[J]. Environmental Science and Pollution Research International, 2020, 27(15): 17661-17670.doi: 10.1007/s11356-020-08236-y.
doi: 10.1007/s11356-020-08236-y
pmid: 32180142
|
[4] |
Ahmed M, Rauf M, Mukhtar Z, Saeed N A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health[J]. Environmental Science and Pollution Research, 2017, 24(35): 26983-26987.doi: 10.1007/s11356-017-0589-7.
doi: 10.1007/s11356-017-0589-7
URL
|
[5] |
Du S T, Zhang Y S, Lin X Y. Accumulation of nitrate in vegetables and its possible implications to human health[J]. Agricultural Sciences in China, 2007, 6(10): 1246-1255.doi: 10.1016/S1671-2927(07)60169-2.
doi: 10.1016/S1671-2927(07)60169-2
URL
|
[6] |
Kerry R G, Mahapatra G P, Patra S, Sahoo S L, Pradhan C, Padhi B K, Rout J R. Proteomic and genomic responses of plants to nutritional stress[J]. BioMetals, 2018, 31(2): 161-187.doi: 10.1007/s10534-018-0083-9.
doi: 10.1007/s10534-018-0083-9
pmid: 29453655
|
[7] |
Jin Z, Zhu Y J, Li X R, Dong Y S, An Z S. Soil N retention and nitrate leaching in three types of dunes in the MuUs desert of China[J]. Scientific Reports, 2015, 5: 14222.doi: 10.1038/srep14222.
doi: 10.1038/srep14222
|
[8] |
doi: 10.1146/annurev-arplant-042811-105532
pmid: 22224450
|
[9] |
Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing,enzymes involved,reductant supply,and nitrate signaling: A review and synthesis[J]. Plant Physiology and Biochemistry, 2019, 136: 245-254.doi: 10.1016/j.plaphy.2018.12.011.
doi: 10.1016/j.plaphy.2018.12.011
URL
|
[10] |
Massel K, Campbell B C, Mace E S, Tai S S, Tao Y F, Worland B G, Jordan D R, Botella J R, Godwin I D. Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor[J]. Frontiers in Plant Science, 2016, 7: 1544.doi: 10.3389/fpls.2016.01544.
doi: 10.3389/fpls.2016.01544
pmid: 27826302
|
[11] |
Iqbal A, Dong Q, Alamzeb M, Wang X R, Gui H P, Zhang H H, Pang N C, Zhang X L, Song M Z. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency[J]. Journal of the Science of Food and Agriculture, 2020, 100(3): 904-914.doi: 10.1002/jsfa.10085.
doi: 10.1002/jsfa.10085
pmid: 31612486
|
[12] |
Purnell M P, Botella J R. Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo[J]. Plant Physiology, 2007, 143(1): 530-539.doi: 10.1104/pp.106.091330.
doi: 10.1104/pp.106.091330
URL
|
[13] |
Guo J H, Yan Y, Dong L D, Jiao Y G, Xiong H Z, Shi L Q, Tian Y, Yang Y B, Shi A N. Quality control techniques and related factors for hydroponic leafy vegetables[J]. HortScience, 2019, 54(8): 1330-1337.doi: 10.21273/hortsci13853-18.
doi: 10.21273/hortsci13853-18
URL
|
[14] |
Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. Nitrate transport and signalling in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(3): 789-798.doi: 10.1093/jxb/eru001.
doi: 10.1093/jxb/eru001
pmid: 24532451
|
[15] |
Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J, Li L G, Schroeder J I, Gassmann W, Gong J M. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5): 1633-1646.doi: 10.1105/tpc.110.075242.
doi: 10.1105/tpc.110.075242
URL
|
[16] |
Gojon A, Gaymard F. Keeping nitrate in the roots: An unexpected requirement for cadmium tolerance in plants[J]. Journal of Molecular Cell Biology, 2010, 2(6): 299-301.doi: 10.1093/jmcb/mjq019.
doi: 10.1093/jmcb/mjq019
pmid: 20837581
|
[17] |
Zhang G B, Yi H Y, Gong J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998.doi: 10.1105/tpc.114.129296.
doi: 10.1105/tpc.114.129296
URL
|
[18] |
Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1.7,expressed in phloem,is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9): 2750-2761.doi: 10.1105/tpc.109.067603.
doi: 10.1105/tpc.109.067603
URL
|
[19] |
Hsu P K, Tsay Y F. Two phloem nitrate transporters,NRT1.11 and NRT1.12,are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2): 844-856.doi: 10.1104/pp.113.226563.
doi: 10.1104/pp.113.226563
URL
|
[20] |
Cui J, Peuke A D, Limami A M, Tcherkez G. Why is phloem sap nitrate kept low?[J]. Plant,Cell & Environment, 2021, 44(9): 2838-2843.doi: 10.1111/pce.14116.
doi: 10.1111/pce.14116
|
[21] |
李彦华, 杨芸, 徐卫红, 周鑫斌, 王卫中, 迟荪琳, 李桃, 张春来, 赵婉伊, 秦余丽, 王正银, 谢德体. 不同小白菜品种硝酸盐含量、氮代谢关键酶活性及NRT1表达和亚细胞定位[J]. 食品科学, 2018, 39(7): 78-84.doi: 10.7506/spkx1002-6630-201807012.
doi: 10.7506/spkx1002-6630-201807012
|
|
Li Y H, Yang Y, Xu W H, Zhou X B, Wang W Z, Chi S L, Li T, Zhang C L, Zhao W Y, Qin Y L, Wang Z Y, Xie D T. Nitrate content,activities of key enzymes for nitrogen metabolism,and expression and subcellular localization of NRT1 in different nitrate-enriched varieties of pakchoi(Brassica chinensis L.)[J]. Food Science, 2018, 39(7): 78-84.
|
[22] |
doi: 10.13537/j.issn.1004-3918.2013.10.007
|
|
Yang Y Z, Zhao Q, Wang G X, Peng F R. Contents of nitrate and activities of nitrate reductase in buds of Toona sinensis[J]. Henan Science, 2013, 31(10): 1620-1623.
|
[23] |
doi: 10.1146/annurev-arplant-042817-040056
URL
|
[24] |
doi: 10.16258/j.cnki.1674-5906.2005.04.023
|
|
Luo J, Cheng D S, Lin D J, Liu S Z. Effects of harvesting time and controlled supply of nitrogen on nitrate content of Brassia campestris in hydroponics[J]. Ecology and Enviromental Sciences, 2005, 14(4):562-566.
|
[25] |
李万星, 李丹, 李小霞, 曹晋军, 靳鲲鹏, 韩文清, 苏秀敏, 王佼, 黄学芳, 刘永忠. 不同轮作模式对旱地番茄品质、产量及土壤真菌多样性的影响[J]. 华北农学报, 2022, 37(4):82-89.doi: 10.7668/hbnxb.20192759.
doi: 10.7668/hbnxb.20192759
|
|
Li W X, Li D, Li X X, Cao J J, Jin K P, Han W Q, Su X M, Wang J, Huang X F, Liu Y Z. Effects of different rotation patterns on tomato quality and yield and soil fungi diversity in dryland[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4): 82-89.
doi: 10.7668/hbnxb.20192759
|
[26] |
曹兵, 王学霞, 倪小会, 陈延华, 文方芳, 刘自飞, 张梦佳, 左强, 邹国元, 张雪莲. 控释掺混肥在结球生菜上的减量施用效应[J]. 华北农学报, 2022, 37(2):104-111.doi: 10.7668/hbnxb.20192345.
doi: 10.7668/hbnxb.20192345
|
|
Cao B, Wang X X, Ni X H, Chen Y H, Wen F F, Liu Z F, Zhang M J, Zuo Q, Zou G Y, Zhang X L. Effects of controlled release blended fertilizer with application rate reduction on head lettuce[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 104-111.
doi: 10.7668/hbnxb.20192345
|
[27] |
黄彩变. 叶菜硝态氮吸收、溢泌及还原转化与品种间叶柄硝态氮累积差异的关系[D]. 杨凌: 西北农林科技大学, 2009.
|
|
Huang C B. Nitrate uptake, efflux,reduction and transformation,and their relationships to petiole nitrate accumulation over leafy vegetable cultivars[D]. Yangling: Northwest A&F University, 2009.
|
[28] |
张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析[J]. 作物学报, 2018, 44(2): 197-207.doi: 10.3724/SP.J.1006.2018.00197.
doi: 10.3724/SP.J.1006.2018.00197
|
|
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L.[J]. Acta Agronomica Sinica, 2018, 44(2): 197-207.
doi: 10.3724/SP.J.1006.2018.00197
URL
|
[29] |
doi: 10.11869/j.issn.100-8551.2019.10.1959
|
|
Ye H X, Lü L, Wang T L, Hai R, Wang B L. Dynamic changes of sugar accumulation and sucrose metabolic enzymes activity during fruit growth and maturation in different varieties of melon(Cucumis melo L.)[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1959-1966.
|
[30] |
doi: 10.7666/d.Y3438508
|
|
Niu J Q. Cloning,expression analysis of sucrose conversion and transporters related genes and their relationships with sucrose accumulation in sugarcane[D]. Nanning: Guangxi University, 2015.
|
[31] |
doi: 10.16377/j.cnki.issn1007-7731.2021.21.011
|
|
Xu S H. Research advances of reactive oxygen species in plants under environmental stress[J]. Anhui Agricultural Science Bulletin, 2021, 27(21): 29-32.
|
[32] |
Tavanti T R, de Melo A A R, Moreira L D K, Sanchez D E J, Silva R D S, da Silva R M, Reis A R D. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants[J]. Plant Physiology and Biochemistry, 2021, 160: 386-396.doi: 10.1016/j.plaphy.2021.01.040.
doi: 10.1016/j.plaphy.2021.01.040
pmid: 33556754
|
[33] |
Medina E, Kim S H, Yun M, Choi W G. Recapitulation of the function and role of ROS generated in response to heat stress in plants[J]. Plants, 2021, 10(2): 371.doi: 10.3390/plants10020371.
doi: 10.3390/plants10020371
URL
|
[34] |
Das K, Roychoudhury A. Reactive oxygen species(ROS)and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science, 2014, 2: 53.doi: 10.3389/fenvs.2014.00053.
doi: 10.3389/fenvs.2014.00053
|
[35] |
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development[J]. Plant Diversity, 2020, 42(1): 33-43.doi: 10.1016/j.pld.2019.10.002.
doi: 10.1016/j.pld.2019.10.002
pmid: 32140635
|
[36] |
Shi H Z, Xiong L M, Stevenson B, Lu T G, Zhu J K. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance[J]. The Plant Cell, 2002, 14(3): 575-588.doi: 10.1105/tpc.010417.
doi: 10.1105/tpc.010417
URL
|