[1] |
Crawford N M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389-395.doi : 10.1016/S1360-1385(98)01311-9.
doi: 10.1016/S1360-1385(98)01311-9
URL
|
[2] |
Mueller N D, West P C, Gerber J S, MacDonald G K, Polasky S, Foley J A. A tradeoff frontier for global nitrogen use and cereal production[J]. Environmental Research Letters, 2014, 9(5): 054002. doi: 10.1088/1748-9326/9/5/054002.
doi: 10.1088/1748-9326/9/5/054002
|
[3] |
doi: 10.3969/j.issn.1001-7461.2012.05.15
|
|
Yuan D, Li H, Hao W F, Luo Z B. Genome-wide sequence analysis of high affinity nitrate transporter(NRT2s)gene family in Populus trichocarpa[J]. Journal of Northwest Forestry University, 2012, 27(5): 80-86.
|
[4] |
doi: 10.3969/j.issn.1002-2481.2020.03.02
|
|
Ye L, Zhang J, Guo Y Z, Zhao X W, Wang X C. Identification and bioinformatics analysis of NRT2 gene family in millet[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(3): 283-290.
|
[5] |
doi: 10.13592/j.cnki.ppj.2015.0621
|
|
Zhang H Q, Zhang H M, Liang Y S, Nan W B. Research progress of nitrate in plant transport mechanism[J]. Plant Physiology Journal, 2016, 52(2): 141-149.
doi: 10.1111/j.1399-3054.1981.tb06047.x
URL
|
[6] |
Li W B, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D M. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2006, 143(1): 425-433. doi: 10.1104/pp.106.091223.
doi: 10.1104/pp.106.091223
URL
|
[7] |
Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde B G, Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19206-19211. doi: 10.1073/pnas.0605275103.
doi: 10.1073/pnas.0605275103
pmid: 17148611
|
[8] |
Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology, 2006, 140(3): 909-921. doi: 10.1104/pp.105.075721.
doi: 10.1104/pp.105.075721
pmid: 16415211
|
[9] |
Feng H M, Yan M, Fan X R, Li B Z, Shen Q R, Miller A J, Xu G H. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332. doi: 10.1093/jxb/erq403.
doi: 10.1093/jxb/erq403
pmid: 21220781
|
[10] |
doi: 10.3969/J.ISSN.1000-5137.2017.05.019
|
|
Song T L, Zhou J J, Xu C X, Cai X F, Dai S J, Wang Q H, Wang X L. Progress in function and regulation of nitrate transporters in plants[J]. Journal of Shanghai Normal University (Natural Sciences), 2017, 46(5): 740-750.
|
[11] |
doi: 10.19870/j.cnki.11-3716/ts.2021.04.003
|
|
Shang H J, Jiang L J, Yu C, Jiang B L, Yan X M. Nutritional function of quinoa and extraction status of quinoa protein and saponin[J]. Food and Nutrition in China, 2021, 27(4): 43-48.
|
[12] |
doi: 10.3969/j.issn.1008-9578.2021.03.003
|
|
Guo H M, Geng Y L, Lü W, Yang X S. Research progress on development and utilization of quinoa[J]. Cereals & Oils, 2021, 34(3): 9-11.
|
[13] |
doi: 10.15889/j.issn.1002-1302.2021.11.004
|
|
Hou L Y, Dong Y H, Li Y L, Wang Y C, Zhao J, Liu J, Qin Y J, Wu S J. Research progress and prospect of drought tolerance of quinoa[J]. Jiangsu Agricultural Sciences, 2021, 49(11): 22-28.
|
[14] |
doi: 10.16663/j.cnki.lskj.2018.21.041
|
|
Li Y N. Application Prospect of Chenopodium quinoa Willd in the improvement of saline-alkali land[J]. Journal of Green Science and Technology, 2018(21): 104-105,108.
|
[15] |
Jacobsen S E. The situation for quinoa and its production in southern bolivia: from economic success to environmental disaster[J]. Journal of Agronomy and Crop Science, 2011, 197(5): 390-399.doi: 10.1111/j.1439-037x.2011.00475.x.
doi: 10.1111/j.1439-037x.2011.00475.x
URL
|
[16] |
朱满喜, 张玉荣, 杨雅舒, 杨小兰, 王创云, 邓妍, 赵丽, 张丽光, 秦丽霞, 杨利艳. 藜麦NLP转录因子家族的鉴定及表达分析[J]. 华北农学报, 2021, 36(4): 37-46.doi: 10.7668/hbnxb.20191913.
doi: 10.7668/hbnxb.20191913
|
|
Zhu M X, Zhang Y R, Yang Y S, Yang X L, Wang C Y, Deng Y, Zhao L, Zhang L G, Qin L X, Yang L Y. Identification and expression analysis of NLP transcription factor family of Chenopodium quinoa willd[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4): 37-46.
|
[17] |
von Wittgenstein N V, Le C H, Hawkins B J, Ehlting J. Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants[J]. BMC Evolutionary Biology, 2014, 14(1): 11.doi: 10.1186/1471-2148-14-11.
doi: 10.1186/1471-2148-14-11
URL
|
[18] |
doi: 10.3969/j.issn.1000-4440.2015.01.007
|
|
Qian Y, Cha Q Q, Kong M, Liu Z K, Li Y, Hou X L, Liu T K. Molecular evolution of NRT2 gene family in plant[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(1): 45-54.
|
[19] |
Forde B G. Nitrate transporters in plants: structure,function and regulation[J]. Biochimica et Biophysica Acta, 2000, 1465(1/2): 219-235.doi: 10.1016/s0005-2736(00)00140-1.
doi: 10.1016/s0005-2736(00)00140-1
|
[20] |
Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis,and Drosophila[J]. Genome Research, 2001, 11(12): 2101-2114. doi: 10.1101/gr.200801.
doi: 10.1101/gr.200801
pmid: 11731501
|
[21] |
Babenko V N, Rogozin I B, Mekhedov S L, Koonin E V. Prevalence of intron gain over intron loss in the evolution of paralogous gene families[J]. Nucleic Acids Research, 2004, 32(12): 3724-3733. doi: 10.1093/nar/gkh686.
doi: 10.1093/nar/gkh686
pmid: 15254274
|
[22] |
Quesada A, Galván A, Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii[J]. Heliyon, 1994, 5(3): 407-419. doi: 10.1111/j.1365-313x.1994.00407.x.
doi: 10.1111/j.1365-313x.1994.00407.x
|
[23] |
Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis structure and gene expression[J]. Plant Physiology, 2002, 129(2): 886-896. doi: 10.1104/pp.005280.
doi: 10.1104/pp.005280
URL
|
[24] |
Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds[J]. The Plant Cell, 2007, 19(5): 1590-1602. doi: 10.1105/tpc.107.050542.
doi: 10.1105/tpc.107.050542
URL
|
[25] |
Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. Nitrate transport and signalling in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(3): 789-798. doi: 10.1093/jxb/eru001.
doi: 10.1093/jxb/eru001
pmid: 24532451
|
[26] |
doi: 10.19675/j.cnki.1006-687x.2021.02056
|
|
Li J, Zuo X X, Zhao P L, Zhang L Y, Xu W L, Zhang X Y, Ni D J, Wang M L. Identification and expression analysis of high-affinity nitrate transporter family genes NRT2 in Camellia sinensis[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 50-56.
|
[27] |
Lawton-Rauh A. Evolutionary dynamics of duplicated genes in plants[J]. Mol Phylogenet Evol, 2003, 29(3):396-409. doi: 10.1016/j.ympev.2003.07.004.
doi: 10.1016/j.ympev.2003.07.004
pmid: 14615182
|
[28] |
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse J M, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: From molecular bases to regulatory networks[J]. Annual Review of Plant Biology, 2011, 62: 25-51. doi: 10.1146/annurev-arplant-042110-103741.
doi: 10.1146/annurev-arplant-042110-103741
pmid: 21275645
|
[29] |
Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241. doi: 10.1111/tpj.12626.
doi: 10.1111/tpj.12626
pmid: 25065551
|
[30] |
Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, Gojon A. Major alterations of the regulation of root NO 3 -uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis[J]. Plant Physiology, 2001, 127(1): 262-271. doi: 10.1104/pp.127.1.262.
doi: 10.1104/pp.127.1.262
pmid: 11553754
|
[31] |
Asim M, Ullah Z, Oluwaseun A, Wang Q, Liu H. Signalling overlaps between nitrate and auxin in regulation of the root system architecture: Insights from the Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2020, 21(8): E2880. doi: 10.3390/ijms21082880.
doi: 10.3390/ijms21082880
|
[32] |
李志康, 严冬, 薛张逸, 顾逸彪, 李思嘉, 刘立军, 张耗, 王志琴, 杨建昌, 顾骏飞. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4): 311-324.doi: 10.16819/j.1001-7216.2018.8027.
doi: 10.16819/j.1001-7216.2018.8027
|
|
Li Z K, Yan D, Xue Z Y, Gu Y B, Li S J, Liu L J, Zhang H, Wang Z Q, Yang J C, Gu J F. Regulations of plant growth and development by cytokinins and their applications in rice production[J]. Chinese Journal of Rice Science, 2018, 32(4): 311-324.
doi: 10.16819/j.1001-7216.2018.8027
|
[33] |
doi: 10.13332/j.1000-1522.20160041
|
|
Tang X L, Zhang Y, Zhang D, Xia X L, Yin W L. Functional identification and analysis of PtNRT2.7 gene from Populus trichocarpa[J]. Journal of Beijing Forestry University, 2016, 38(8): 18-27.
|
[34] |
Bassett C L, Baldo A M, Moore J T, Jenkins R M, Soffe D S, Wisniewski M E, Norelli J L, Farrell R E. Genes responding to water deficit in apple( Malus× domestica Borkh.)roots[J]. BMC Plant Biology, 2014, 14: 182. doi: 10.1186/1471-2229-14-182.
doi: 10.1186/1471-2229-14-182
pmid: 25004790
|
[35] |
Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser B N. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle[J]. The New Phytologist, 2013, 198(1): 82-94. doi: 10.1111/nph.12166.
doi: 10.1111/nph.12166
URL
|
[36] |
Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J. AtNPF2.5 modulates chloride(Cl-)efflux from roots of Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, 7: 2013. doi: 10.3389/fpls.2016.02013.
doi: 10.3389/fpls.2016.02013
|
[37] |
Little D Y, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy J E. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(38): 13693-13698. doi: 10.1073/pnas.0504219102.
doi: 10.1073/pnas.0504219102
pmid: 16157886
|