[1] |
Cubas P, Lauter N, Doebley J, Coen E. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2):215-222.doi: 10.1046/j.1365-313x.1999.00444.x.
URL
|
[2] |
Martín-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1):31-39.doi: 10.1016/j.tplants.2009.11.003.
pmid: 19963426
|
[3] |
Schommer C, Palatnik J F, Aggarwal P, Chételat A, Cubas P, Farmer E E, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9):e230.doi: 10.1371/journal.pbio.0060230.
URL
|
[4] |
Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk A D J, Muino J M, Cutri L, Dornelas M C, Angenent G C, Immink R G H. Arabidopsis class Ⅰ and class Ⅱ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiology, 2012, 159(4):1511-1523.doi: 10.1104/pp.112.200303.
URL
|
[5] |
Qi X Y, Qu Y X, Gao R, Jiang J F, Fang W M, Guan Z Y, Zhang F, Zhao S, Chen S M, Chen F D, Wang H B. The heterologous expression of a Chrysanthemum nankingense TCP transcription factor blocks cell division in yeast and Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2019, 20(19):4848.doi: 10.3390/ijms20194848.
URL
|
[6] |
Qi X Y, Qu Y X, Jiang J F, Guan Y X, Song A P, Cao P P, Guan Z Y, Fang W M, Chen S M, Chen F D, Wang H B. Heterologous expression of Chrysanthemum nankingense TCP13 suppresses leaf development in Arabidopsis thaliana[J]. Plant Growth Regulation, 2021, 95(3):331-341.doi: 10.1007/S10725-021-00743-3.
|
[7] |
Li J, Wang Y Z, Zhang Y X, Wang W Y, Irish V F, Huang T B. RABBIT EARS regulates the transcription of TCP4 during petal development in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(22):6473-6480.doi: 10.1093/jxb/erw419.
URL
|
[8] |
Li X Y, Zhang G F, Liang Y H, Hu L, Zhu B N, Qi D M, Cui S J, Zhao H T. TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis[J]. The Plant Journal, 2021, 108(5):1493-1506.doi: 10.1111/tpj.15524.
URL
|
[9] |
Shi P B, Guy K M, Wu W F, Fang B S, Yang J H, Zhang M F, Hu Z Y. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus[J]. BMC Plant Biology, 2016, 16:85.doi: 10.1186/s12870-016-0765-9.
URL
|
[10] |
Wu J, Wu W J, Liang J H, Jin Y J, Gazzarrini S, He J N, Yi M F. GhTCP19 transcription factor regulates corm dormancy release by repressing GhNCED expression in Gladiolus[J]. Plant and Cell Physiology, 2019, 60(1):52-62.doi: 10.1093/pcp/pcy186.
URL
|
[11] |
Resentini F, Felipo-Benavent A, Colombo L, Blázquez M A, Alabadí D, Masiero S. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana[J]. Molecular Plant, 2015, 8(3):482-485.doi: 10.1016/j.molp.2014.11.018.
URL
|
[12] |
Liu Y R, Li D Y, Yan J P, Wang K X, Luo H, Zhang W J. MiR319 mediated salt tolerance by ethylene[J]. Plant Biotechnology Journal, 2019, 17(12):2370-2383.doi: 10.1111/pbi.13154.
pmid: 31094071
|
[13] |
Ferrero L V, Gastaldi V, Ariel F D, Viola I L, Gonzalez D H. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin[J]. Plant Molecular Biology, 2021, 105(1/2):147-159.doi: 10.1007/s11103-020-01075-y.
|
[14] |
Zhang X, Bao Y L, Shan D Q, Wang Z H, Song X N, Wang Z Y, Wang J S, He L Q, Wu L, Zhang Z G, Niu D D, Jin H L, Zhao H W. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice[J]. Plant Physiology, 2018, 177(1):352-368.doi: 10.1104/pp.17.01665.
pmid: 29549093
|
[15] |
Almeida D M, Gregorio G B, Oliveira M M, Saibo N J M. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype[J]. Plant Molecular Biology, 2017, 93(1/2):61-77.doi: 10.1007/s11103-016-0547-7.
URL
|
[16] |
Pruneda-Paz J L, Breton G, Para A, Kay S A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock[J]. Science, 2009, 323(5920):1481-1485.doi: 10.1126/science.1167206.
pmid: 19286557
|
[17] |
Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee C P, Van Aken O, Millar A H, Murcha M, Whelan J. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana[J]. The Plant Cell, 2010, 22(12):3921-3934.doi: 10.1105/tpc.110.074518.
URL
|
[18] |
Li S T, Zachgo S. TCP3 interacts with R2R3-MYB proteins,promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J]. The Plant Journal, 2013, 76(6):901-913.doi: 10.1111/tpj.12348.
URL
|
[19] |
|
|
Yuan C Q, Shu C J, Shan Y, Xiao Z C, Zhang W M. Application and development of economic plants in “one belt and one road”(chapter east Asia and Southeast Asia)[J]. Chinese Wild Plant Resources, 2016, 35(1):3-5.
|
[20] |
|
|
Qi X Y, Chen S S, Feng J, Wang H D, Deng Y M. Selection and validation of candidate reference genes for quantitative real-time PCR in Jasminum sambac aiton[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):22-30.
|
[21] |
Xu S X, Ding Y L, Sun J T, Zhang Z Q, Wu Z Y, Yang T Z, Shen F, Xue G. A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and Oleaceae genome evolution[J]. Molecular Ecology Resources, 2022, 22(2):724-739.doi: 10.1111/1755-0998.13497.
URL
|
[22] |
Qi X Y, Wang H D, Chen S S, Feng J, Chen H J, Qin Z Y, Blilou I, Deng Y M. The genome of single-petal jasmine( Jasminum sambac)provides insights into heat stress tolerance and aroma compound biosynthesis[J]. Frontiers in Plant Science, 2022, 13:1045194.doi: 10.3389/fpls.2022.1045194.
URL
|
[23] |
Wang P J, Fang J P, Lin H Z, Yang W W, Yu J X, Hong Y P, Jiang M W, Gu M Y, Chen Q C, Zheng Y C, Liao Z Y, Chen G X, Yang J F, Jin S, Zhang X T, Ye N X. Genomes of single-and double-petal jasmines( Jasminum sambac)provide insights into their divergence time and structural variations[J]. Plant Biotechnology Journal, 2022, 20(7):1232-1234.doi: 10.1111/pbi.13820.
URL
|
[24] |
Wang H D, Qi X Y, Chen S S, Feng J, Chen H J, Qin Z Y, Deng Y M. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing[J]. Journal of Proteomics, 2021, 249:104380.doi: 10.1016/J.JPROT.2021.104380.
URL
|
[25] |
Qi X Y, Wang H D, Liu S Y, Chen S S, Feng J, Chen H J, Qin Z Y, Chen Q M, Blilou I, Deng Y M. The chromosome-level genome of double-petal phenotype jasmine( Jasminum sambac Aiton)provides insights into the biosynthesis of floral scent[J]. Horticultural Plant Journal, 2024, 10(1):259-272.doi: 10.1016/j.hpj.2023.03.006.
URL
|
[26] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Web Server Issue):W202-W208.doi: 10.1093/nar/gkp335.
|
[27] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
URL
|
[28] |
Zhang W, Sun Z R. Random local neighbor joining:a new method for reconstructing phylogenetic trees[J]. Molecular Phylogenetics and Evolution, 2008, 47(1):117-128.doi: 10.1016/j.ympev.2008.01.019.
pmid: 18343690
|
[29] |
Gaut B S, Morton B R, McCaig B C, Clegg M T. Substitution rate comparisons between grasses and palms:synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL[J]. Proceedings of the national Academy of Sciences of the United States of America, 1996, 93(19):10274-10279.doi: 10.1073/pnas.93.19.10274.
pmid: 8816790
|
[30] |
Yao X, Ma H, Wang J, Zhang D B. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology, 2007, 49(6):885-897.
doi: 10.1111/jipb.2007.49.issue-6
URL
|
[31] |
Chai W B, Jiang P F, Huang G Y, Jiang H Y, Li X Y. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize[J]. Physicology and Molecular Biology of Plants, 2017, 23(4):779-791.doi: 10.1007/s12298-017-0476-1.
|
[32] |
Liu Y, Guan X Y, Liu S N, Yang M, Ren J H, Guo M, Huang Z H, Zhang Y W. Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage[J]. International Journal of Molecular Sciences, 2018, 19(3):847.doi: 10.3390/ijms19030847.
URL
|
[33] |
Leng X P, Wei H R, Xu X Z, Ghuge S A, Jia D J, Liu G S, Wang Y Z, Yuan Y B. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine[J]. BMC Genomics, 2019, 20(1):786.doi: 10.1186/s12864-019-6159-2.
pmid: 31664916
|
[34] |
Tian C, Zhai L S, Zhu W J, Qi X Y, Yu Z Y, Wang H B, Chen F D, Wang L K, Chen S M. Characterization of the TCP gene family in Chrysanthemum nankingense and the role of CnTCP4 in cold tolerance[J]. Plants, 2022, 11(7):936.doi: 10.3390/PLANTS11070936.
URL
|
[35] |
Cheng P L, Bi D, Chen J, Zhao M J, Wang Y, Wang H, Cao P P, Huang C B. Genome-wide identification and analysis of TCP transcription factor genes in Rosa chinensis in response to abiotic stress and fungal diseases[J]. Ornamental Plant Research, 2023, 3:3.doi: 10.48130/OPR-2023-0003.
|
[36] |
Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal, 2002, 30(3):337-348.doi: 10.1046/j.1365-313x.2002.01294.x.
URL
|
[37] |
Hou J, Xu H M, Fan D, Ran L Y, Li J Q, Wu S, Luo K M, He X Q. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa[J]. New Phytologist, 2020, 228(4):1354-1368.doi: 10.1111/nph.16782.
URL
|
[38] |
Zhu L, Li S S, Ma Q Y, Wen J, Yan K Y, Li Q Z. The Acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis,accelerates senescence,and affects flowering via miR319 in Arabidopsis thaliana[J]. Journal of Plant Growth Regulation, 2022, 41:244-256.doi: 10.1007/S00344-021-10299-1.
|
[39] |
Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation[J]. The Plant Journal, 2011, 67(4):595-607.doi: 10.1111/J.1365-313X.2011.04616.X.
pmid: 21518050
|
[40] |
Das Gupta M, Aggarwal P, Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling[J]. New Phytologist, 2014, 204(4):901-912.doi: 10.1111/nph.12963.
URL
|
[41] |
Xu Y Z, Liu H L, Gao Y M, Xiong R, Wu M, Zhang K M, Xiang Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2021, 40(10):1971-1987.doi: 10.1007/s00299-021-02765-7.
|
[42] |
Dong W G, Ren W Q, Wang X, Mao Y F, He Y K. MicroRNA319a regulates plant resistance to Sclerotinia stem rot[J]. Journal of Experimental Botany, 2021, 72(10):3540-3553.doi: 10.1093/jxb/erab070.
URL
|
[43] |
Crawford B C W, Nath U, Carpenter R, Coen E S. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J]. Plant Physiology, 2004, 135(1):244-253.doi: 10.1104/pp.103.036368.
pmid: 15122032
|
[44] |
Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22534-22539.doi: 10.1073/pnas.0908718106.
|
[45] |
Yuan C Q, Huang D, Yang Y, Sun M, Cheng T R, Wang J, Pan H T, Zhang Q X. CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium[J]. Plant Molecular Biology, 2020, 103(1/2):159-171.doi: 10.1007/s11103-020-00981-5.
|
[46] |
Ballester P, Navarrete-Gómez M, Carbonero P, Oñate-Sánchez L, Ferrándiz C. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species[J]. Physiologia Plantarum, 2015, 155(1):21-32.doi: 10.1111/ppl.12327.
URL
|
[47] |
Lin Y F, Chen Y Y, Hsiao Y Y, Shen C Y, Hsu J L, Yeh C M, Mitsuda N, Ohme-Takagi M, Liu Z J, Tsai W C. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris[J]. Journal of Experimental Botany, 2016, 67(17):5051-5066.doi: 10.1093/jxb/erw273.
URL
|