[1] |
doi: 10.7668/hbnxb.2014.01.025
|
|
Lü Y M, Tan W P, Xiao C L, Fan M R, Liao Y L. Effect of high temperature on starch formation of grain and activities of enzymes related to starch synthesis of quality rice varieties[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(1): 135-139.
|
[2] |
doi: 10.3969/j.issn.1003-6202.2009.06.001
|
|
Zhang W X, Jin L D, Zhu Z W, Min J, Xu L. Present situation and new trend of rice production,supply and demand in the world[J]. Cereal & Feed Industry, 2009(6): 1-5.
|
[3] |
doi: 10.3724/SP.J.1006.2008.02134
|
|
Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134-2142.
|
[4] |
Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11(1): 2629.doi: 10.1038/s41467-020-16403-5.
doi: 10.1038/s41467-020-16403-5
URL
|
[5] |
Campbell J A, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. The Biochemical Journal, 1997, 326(Pt 3): 929-939.doi: 10.1042/bj3260929u.
doi: 10.1042/bj3260929u
URL
|
[6] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498.doi: 10.1016/j.tplants.2004.08.009.
doi: 10.1016/j.tplants.2004.08.009
pmid: 15465684
|
[7] |
Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3,contribute to cold,salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal, 2017, 89(1): 85-103.doi: 10.1111/tpj.13324.
doi: 10.1111/tpj.13324
URL
|
[8] |
Ko J H, Kim B G, Hur H G, Lim Y, Ahn J H. Molecular cloning,expression and characterization of a glycosyltransferase from rice[J]. Plant Cell Reports, 2006, 25(7): 741-746.doi: 10.1007/s00299-006-0119-4.
doi: 10.1007/s00299-006-0119-4
URL
|
[9] |
Kleinehollenhorst G, Behrens H, Pegels G, Srunk N, Wiermann R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv.Apeldoorn/characterization and activity of three different O-glycosyltransferases during anther development[J]. Zeitschrift für Naturforschung C, 1982, 37(7-8):587-599.doi: 10.1515/znc-1982-7-808.
doi: 10.1515/znc-1982-7-808
URL
|
[10] |
Sutter A, Grisebach H. UDP-glucose: Flavonol 3-O-glucosyltransferase from cell suspension cultures of parsley[J]. Biochimica et Biophysica Acta, 1973,309(2):289-295.doi:10.1016/0005- 2744(73)90027-2.
URL
|
[11] |
doi: 10.13592/j.cnki.ppj.2012.05.010
|
|
Guo Y L, Zhang P Y, Guo M R, Chen K S. Secondary metabolites and plant defence against pathogenic disease[D]. Plant Physiology Journal, 2012, 48(5):429-434.
|
[12] |
Wang J, Hou B K. Glycosyltransferases: key players involved in the modification of plant secondary metabolites[J]. Frontiers of Biology in China, 2009, 4(1): 39-46.doi: 10.1007/s11515-008-0111-1.
doi: 10.1007/s11515-008-0111-1
URL
|
[13] |
Higashi Y, Okazaki Y, Takano K, Myouga F, Shinozaki K, Knoch E, Fukushima A, Saito K. HEAT INDUCIBLE LIPASE1 remodels chloroplastic monogalactosyldiacylglycerol by liberating α-linolenic acid in Arabidopsis leaves under heat stress[J]. The Plant Cell, 2018, 30(8): 1887-1905.doi: 10.1105/tpc.18.00347.
doi: 10.1105/tpc.18.00347
URL
|
[14] |
Essemine J, Govindachary S, Amaar S, Bouzid S, Carpentiter R. Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis[J]. Environmental and Experimental Botany, 2012, 80: 16-26.doi: 10.1016/j.envexpbot.2011.12.022.
doi: 10.1016/j.envexpbot.2011.12.022
URL
|
[15] |
Cao P J, Bartley L E, Jung K H, Ronald P C. Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases[J]. Molecular Plant, 2008, 1(5): 858-877.doi: 10.1093/mp/ssn052.
doi: 10.1093/mp/ssn052
URL
|
[16] |
潘根, 陶杰, 聂荣, 周兵, 黄思齐, 陈安国, 李建军, 唐慧娟, 李德芳, 赵立宁. 大麻CBDAS基因家族成员的全基因组鉴定及表达分析[J]. 华北农学报, 2021, 36(S1): 1-7.doi: 10.7668/hbnxb.20192457.
doi: 10.7668/hbnxb.20192457
|
|
Pan G, Tao J, Nie R, Zhou B, Huang S Q, Chen A G, Li J J, Tang H J, Li D F, Zhao L N. Genome-wide identification and expression analysis of the CBDAS cannabidiolic acid synthase gene family in Cannabis sativa L.[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 1-7.
|
[17] |
Gasteiger E, Hoogland C, Gattiker A, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server[J]. The Proteomics Protocols Handbook, 2005: 571-607.doi: 10.1385/1-59259-890-0:571.
doi: 10.1385/1-59259-890-0:571
|
[18] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8):1296-1297.doi: 10.1093/bioinformatics/btu817.
doi: 10.1093/bioinformatics/btu817
URL
|
[19] |
Bailey T L, Elkan C. Unsupervised learning of multiple motifs in biopolymers using expectation maximization[J]. Machine learning, 1995, 21(1): 51-80.doi: 10.1007/BF00993379.
doi: 10.1007/BF00993379
|
[20] |
Dai X B, Zhao P X. psRNATarget: a plant small RNA target analysis server[J]. Nucleic Acids Research, 2011, 39(S2): W155-W159.doi: 10.1093/nar/gkr319.
doi: 10.1093/nar/gkr319
URL
|
[21] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N D, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504.doi: 10.1101/gr.1239303.
doi: 10.1101/gr.1239303
pmid: 14597658
|
[22] |
Sato Y, Antonio B A, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y. RiceXPro: a platform for monitoring gene expression in Japonica rice grown under natural field conditions[J]. Nucleic Acids Research, 2010, 39(S1): D1141-D1148.doi: 10.1093/nar/gkq1085.
doi: 10.1093/nar/gkq1085
URL
|
[23] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8
pmid: 32585190
|
[24] |
Luo Y, Fang B H, Wang W P, Yang Y, Rao L Q, Zhang C. Genome-wide analysis of the rice J-protein family: Identification,genomic organization,and expression profiles under multiple stresses[J]. 3 Biotech, 2019, 9(10): 1-16.doi: 10.1007/s13205-019-1880-8.
doi: 10.1007/s13205-019-1880-8
URL
|
[25] |
doi: 10.3969/j.issn.1000-7091.2012.03.012
|
|
Tian Y K, Li J F, Wang C H, Yin H, Bai M D. Expression analysis of PpKO gene in pear shoots apical tissue by real-time fluorescent quantitative PCR[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 62-66.
doi: 10.3969/j.issn.1000-7091.2012.03.012
|
[26] |
doi: 10.7668/hbnxb.2009.06.004
|
|
Zhang J H, Meng C S, Zhang C Y, Shi Z, Wang X Y, Li A L, Ma Z Y. Bioinformatic analysis of the auxin gene family in wheat and rice[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(6): 15-19.
|
[27] |
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling[J]. Bioinformatics, 2005, 22(2): 195-201.doi: 10.1093/bioinformatics/bti770.
doi: 10.1093/bioinformatics/bti770
URL
|
[28] |
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(W1): W252-W258.doi: 10.1093/nar/gku340.
doi: 10.1093/nar/gku340
URL
|
[29] |
Xu J R, Zhang Y. How significant is a protein structure similarity with TM-score= 0.5?[J]. Bioinformatics, 2010, 26(7): 889-895.doi: 10.1093/bioinformatics/btq066.
doi: 10.1093/bioinformatics/btq066
URL
|
[30] |
Laskowski R A, Macarthur M W, Moss D S, Thornton J M. PROCHECK: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2): 283-291.doi: 10.1107/S0021889892009944.
doi: 10.1107/S0021889892009944
URL
|
[31] |
Magis C, di Tommaso P, Notredame C. T-RMSD: a web server for automated fine-grained protein structural classification[J]. Nucleic Acids Research, 2013, 41(W1): W358-W362.doi: 10.1093/nar/gkt383.
doi: 10.1093/nar/gkt383
URL
|
[32] |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996,14(1):33-38.doi:10.1016/0263- 7855(96)00018-5.
URL
|
[33] |
Moon S, Kim S R, Zhao G C, Yi J, Yoo Y, Jin P, Lee S W, Jung K H, Zhang D B, An G. Rice GLYCOSYLTRANSFERASE1 encodes a glycosyltransferase essential for pollen wall formation[J]. Plant Physiology, 2012, 161(2): 663-675.doi: 10.1104/pp.112.210948.
doi: 10.1104/pp.112.210948
URL
|
[34] |
Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S. Knockout of a starch synthase gene OsSSⅡIa/Flo5 causes white-core floury endosperm in rice( Oryza sativa L.)[J]. Plant Cell Reports, 2007, 26(7): 1083-1095.doi: 10.1007/s00299-007-0309-8.
doi: 10.1007/s00299-007-0309-8
URL
|
[35] |
Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene,which controls the gelatinization temperature of rice[J]. Science in China Series C,Life Sciences, 2003, 46(6): 661-668.doi: 10.1360/03yc0099.
doi: 10.1360/03yc0099
URL
|
[36] |
Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y. Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiology, 2006, 140(3): 1070-1084.doi: 10.1104/pp.105.071845.
doi: 10.1104/pp.105.071845
pmid: 16443699
|
[37] |
Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901.doi: 10.1111/jipb.13010.
doi: 10.1111/jipb.13010
URL
|
[38] |
张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 郑家奎. 水稻早衰叶突变体 PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080.doi: 10.3724/SP.J.1006.2014.02070.
doi: 10.3724/SP.J.1006.2014.02070
|
|
Zhang T, Sun Y Y, Zheng J M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zheng J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice(Orzya sativa L.)[J]. Acta Agronomica Sinica, 2014, 40(12): 2070-2080.
doi: 10.3724/SP.J.1006.2014.02070
URL
|
[39] |
Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio R L, Matsuoka M, Ueguchi-Tanaka M. OsIDD2,a zinc finger and INDETERMINATE DOMAIN protein,regulates secondary cell wall formation[J]. Journal of Integrative Plant Biology, 2018, 60(2): 130-143.doi: 10.1111/jipb.12557.
doi: 10.1111/jipb.12557
|
[40] |
Lestari P, Lee G, Ham T H, Reflinur R, Woo M O, Piao R H, Jiang W Z, Chu S H, Lee J, Koh H J. Single nucleotide polymorphisms and haplotype diversity in rice sucrose synthase 3[J]. The Journal of Heredity, 2011, 102(6): 735-746.doi: 10.1093/jhered/esr094.
doi: 10.1093/jhered/esr094
URL
|
[41] |
Wang A Y, Yu W P, Juang R H, Huang J W, Sung H Y, Su J C. Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA[J]. Plant Molecular Biology, 1992, 18(6): 1191-1194.doi: 10.1007/BF00047725.
doi: 10.1007/BF00047725
pmid: 1534703
|
[42] |
Odegard W, Liu J J, Benito O. Cloning and expression of rice(Oryza sativa)sucrose synthase 1(RSs1)in developing seed endosperm[J]. Plant Science, 1996,113(1):67-78.doi: 10.1016/0168- 9452(95)04288-1.
URL
|
[43] |
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants[J]. Frontiers in Plant Science, 2016, 7: 735.doi: 10.3389/fpls.2016.00735.
doi: 10.3389/fpls.2016.00735
pmid: 27303427
|
[44] |
Kobayashi K. Role of membrane glycerolipids in photosynthesis,thylakoid biogenesis and chloroplast development[J]. Journal of Plant Research, 2016, 129(4): 565-580.doi: 10.1007/s10265-016-0827-y.
doi: 10.1007/s10265-016-0827-y
pmid: 27114097
|
[45] |
Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1201-1211.doi: 10.1104/pp.108.126375.
doi: 10.1104/pp.108.126375
pmid: 18775970
|
[46] |
Lohmeier-Vogel E M, Kerk D, Nimick M, Wrobel S, Vickerman L, Muench D G, Moorhead G B G. Arabidopsis At5g39790 encodes a chloroplast-localized,carbohydrate-binding,coiled-coil domain-containing putative scaffold protein[J]. BMC Plant Biology, 2008, 8: 120.doi: 10.1186/1471-2229-8-120.
doi: 10.1186/1471-2229-8-120
pmid: 19038037
|
[47] |
Baroja-Fernández E, Muñoz F J,Li J,Bahaji A,Almagro G,Montero M,Etxeberria E,Hidalgo M,Sesma M T,Pozueta-romero J. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production[J]. Proceedings of the National Academy of Sciences,2012,109(1): 321-326.doi: 10.1073/pnas.1117099109.
doi: 10.1073/pnas.1117099109
|
[48] |
Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54.doi: 10.1111/jipb.12899.
doi: 10.1111/jipb.12899
URL
|
[49] |
Zhang M, Henquet M, Chen Z Z, Zhang H R, Zhang Y, Ren X Z, Van-Der-Krol S, Gonneau M, Bosch D, Gong Z Z. LEW3,encoding a putative α-1,2-mannosyltransferase(ALG11)in N-linked glycoprotein,plays vital roles in cell-wall biosynthesis and the abiotic stress response in Arabidopsis thaliana[J]. The Plant Journal, 2009, 60(6): 983-999.doi: 10.1111/j.1365-313X.2009.04013.x.
doi: 10.1111/j.1365-313X.2009.04013.x
pmid: 19732381
|
[50] |
Yu C W, Lin Y T, Li H M. Increased ratio of galactolipid MGDG∶ DGDG induces jasmonic acid overproduction and changes chloroplast shape[J]. The New Phytologist, 2020, 228(4): 1327-1335.doi: 10.1111/nph.16766.
doi: 10.1111/nph.16766
URL
|
[51] |
Hofmann N R, Theg S M. Chloroplast outer membrane protein targeting and insertion[J]. Trends in Plant Science, 2005, 10(9): 450-457.doi: 10.1016/j.tplants.2005.07.009.
doi: 10.1016/j.tplants.2005.07.009
pmid: 16085449
|