[1] |
Assmann S M. Natural variation in abiotic stress and climate change responses in Arabidopsis: Implications for Twenty-First-Century agriculture[J]. International Journal of Plant Sciences, 2013, 174(1): 3-26.doi: 10.1086/667798.
doi: 10.1086/667798
URL
|
[2] |
Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10763-10768.doi: 10.1073/pnas.181141598.
doi: 10.1073/pnas.181141598
pmid: 11526204
|
[3] |
Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots[J]. Current Opinion in Plant Biology, 2006, 9(5): 460-469.doi: 10.1016/j.pbi.2006.07.009.
doi: 10.1016/j.pbi.2006.07.009
pmid: 16877029
|
[4] |
Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant Physiology, 1995, 108(2): 451-457.doi: 10.1104/pp.108.2.451.
doi: 10.1104/pp.108.2.451
pmid: 7610156
|
[5] |
doi: 10.13763/j.cnki.jhebnu.nse.2010.02.012
|
|
Shi C C, Gao L G, Hui Y, Hu J R, Lu J, Ge R C. Progress of study on receptor-like protein kinases in plant[J]. Journal of Hebei Normal University (Natural Science Edition), 2010, 34(2): 216-220.
|
[6] |
diGaspero G, Cipriani G. Nucleotide binding site/leucine-rich repeats,Pto-like and receptor-like kinases related to disease resistance in grapevine[J]. Molecular Genetics and Genomics, 2003, 269(5): 612-623.doi: 10.1007/s00438-003-0884-5.
doi: 10.1007/s00438-003-0884-5
pmid: 12884009
|
[7] |
Becraft P W, Stinard P S, McCarty D R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273(5280): 1406-1409.doi: 10.1126/science.273.5280.1406.
doi: 10.1126/science.273.5280.1406
pmid: 8703079
|
[8] |
Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: Diversity,function,and signaling[J]. Science's STKE, 2001, 2001(113): re22.doi: 10.1126/stke.2001.113.re22.
doi: 10.1126/stke.2001.113.re22
|
[9] |
Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands[J]. Nature, 1995, 374(6518): 183-186.doi: 10.1038/374183a0.
doi: 10.1038/374183a0
URL
|
[10] |
doi: 10.3969/j.issn.1671-1114.2016.01.011
|
|
Song T, Xiong W, Li Y Y, Cao Z H, Liu C X, Liu W Y, Luan W J. RNAi and expression analysis of a leucine-rich repeat receptor-like protein kinase in rice[J]. Journal of Tianjin Normal University (Natural Science Edition), 2016, 36(1): 48-51.
|
[11] |
Tsuwamoto R, Fukuoka H, Takahata Y. GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos[J]. The Plant Journal, 2008, 54(1): 30-42.doi: 10.1111/j.1365-313X.2007.03395.x.
doi: 10.1111/j.1365-313X.2007.03395.x
pmid: 18088309
|
[12] |
Sijacic P, Liu Z C. Novel insights from live-imaging in shoot meristem development[J]. Journal of Integrative Plant Biology, 2010, 52(4): 393-399.doi: 10.1111/j.1744-7909.2010.00941.x.
doi: 10.1111/j.1744-7909.2010.00941.x
|
[13] |
Zha X J, Luo X J, Qian X Y, He G M, Yang M F, Li Y, Yang J S. Over-expression of the rice LRK1 gene improves quantitative yield components[J]. Plant Biotechnology Journal, 2009, 7(7): 611-620.doi: 10.1111/j.1467-7652.2009.00428.x.
doi: 10.1111/j.1467-7652.2009.00428.x
URL
|
[14] |
doi: 10.7666/d.D01032868
|
|
Wu Y Z. Genome-wide expression pattern analyses of LRR-RLKs and study of ELE regulating plastochron length of leaf in Arabidopsis[D]. Lanzhou: Lanzhou University, 2016.
|
[15] |
Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats[J]. The Plant Cell, 1996, 8(4): 735-746.doi: 10.1105/tpc.8.4.735.
doi: 10.1105/tpc.8.4.735
|
[16] |
Dievart A, Perin C, Hirsch J, Bettembourg M, Lanau N, Artus F, Bureau C, Noel N, Droc G, Peyramard M, Pereira S, Courtois B, Morel J B, Guiderdoni E. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals[J]. Plant Science, 2016, 242: 240-249.doi: 10.1016/j.plantsci.2015.06.019.
doi: S0168-9452(15)30002-9
pmid: 26566841
|
[17] |
Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, Yamaguchi K, Hasebe M, Mitsumasu K, Sawa S. Bam 1 and receptor-like protein kinase 2 constitute a signaling pathway and modulate cle peptide-triggered growth inhibition in Arabidopsis root[J]. The New Phytologist, 2015, 208(4): 1104-1113.doi: 10.1111/nph.13520.
doi: 10.1111/nph.13520
URL
|
[18] |
Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis[J]. The Plant Journal, 2012, 70(4): 599-613.doi: 10.1111/j.1365-313X.2012.04901.x.
doi: 10.1111/j.1365-313X.2012.04901.x
URL
|
[19] |
Hua D P, Wang C, He J N, Liao H, Duan Y, Zhu Z Q, Guo Y, Chen Z Z, Gong Z Z. A plasma membrane receptor kinase,GHR1,mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis[J]. The Plant Cell, 2012, 24(6): 2546-2561.doi: 10.1105/tpc.112.100107.
doi: 10.1105/tpc.112.100107
URL
|
[20] |
Yang T B, Chaudhuri S, Yang L H, Du L Q, Poovaiah B W. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. The Journal of Biological Chemistry, 2010, 285(10): 7119-7126.doi: 10.1074/jbc.M109.035659.
doi: 10.1074/jbc.M109.035659
URL
|
[21] |
Sicilia A, Testa G, Santoro D F, Cosentino S L, Lo Piero A R. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress[J]. BMC Plant Biology, 2019, 19(1): 355.doi: 10.1186/s12870-019-1964-y.
doi: 10.1186/s12870-019-1964-y
pmid: 31416418
|
[22] |
Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like Kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis[J]. The Plant Cell, 2005, 17(4): 1105-1119.doi: 10.1105/tpc.104.027474.
doi: 10.1105/tpc.104.027474
URL
|
[23] |
Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Overproduction of the membrane-bound receptor-like protein kinase 1,RPK1,enhances abiotic stress tolerance in Arabidopsis[J]. The Journal of Biological Chemistry, 2010, 285(12): 9190-9201.doi: 10.1074/jbc.M109.051938.
doi: 10.1074/jbc.M109.051938
URL
|
[24] |
doi: 10.3724/SP.J.1006.2020.92060
|
|
Li J L, Chen X X, Shi C C, Liu F H, Sun J, Ge R C. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seed-Ling stage in rice[J]. Acta Agronomica Sinica, 2020, 46(8): 1217-1224.
doi: 10.3724/SP.J.1006.2020.92060
URL
|
[25] |
Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana[J]. Plant Science, 2014, 217/218: 63-70.doi: 10.1016/j.plantsci.2013.12.002.
doi: 10.1016/j.plantsci.2013.12.002
URL
|
[26] |
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca 2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. The Plant Journal, 2000, 23(3): 319-327.doi: 10.1046/j.1365-313x.2000.00787.x.
doi: 10.1046/j.1365-313x.2000.00787.x
URL
|
[27] |
Ramegowda V, Basu S, Gupta C, Pereira A. Regulation of grain yield in rice under well-watered and drought stress conditions by GUDK[J]. Plant Signaling & Behavior, 2015, 10(11): e1034421.doi: 10.1080/15592324.2015.1034421.
doi: 10.1080/15592324.2015.1034421
|
[28] |
Wani K I, Naeem M, Castroverde C D M, Kalaji H M, Albaqami M, Aftab T. Molecular mechanisms of nitric oxide(NO)signaling and Reactive oxygen species(ROS)homeostasis during abiotic stresses in plants[J]. International Journal of Molecular Sciences, 2021, 22(17): 9656.doi: 10.3390/ijms22179656.
doi: 10.3390/ijms22179656
URL
|
[29] |
Wang Y Y, Liu Z Y, Wang P L, Jiang B, Lei X J, Wu J, Dong W F, Gao C Q. Correction to: A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants[J]. BMC Plant Biology, 2020, 20(1): 382.doi: 10.1186/s12870-020-02600-3.
doi: 10.1186/s12870-020-02600-3
URL
|
[30] |
Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216.doi: 10.1016/j.envexpbot.2007.12.006.
doi: 10.1016/j.envexpbot.2007.12.006
URL
|
[31] |
doi: 10.1016/s1360-1385(00)01838-0
pmid: 11173290
|
[32] |
Delauney A J, Verma D P. A soybean gene encoding Δ'-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated[J]. Molecular & General Genetics, 1990, 221(3): 299-305.doi: 10.1007/BF00259392.
doi: 10.1007/BF00259392
|
[33] |
doi: 10.7668/hbnxb.20193021
|
|
Zhang B. Functional analysis of soybean GmPP2C89 gene under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4):20-27.
|
[34] |
Xiong L, Bh L, Ishitani M, Lee H, Zhang C, Zhu J K. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis[J]. Genes & Development, 2001, 15(15): 1971-1984.doi: 10.1101/gad.891901.
doi: 10.1101/gad.891901
URL
|