[1] |
朱满喜, 张玉荣, 杨雅舒, 杨小兰, 王创云, 邓妍, 赵丽, 张丽光, 秦丽霞, 杨利艳. 藜麦NLP转录因子家族的鉴定及表达分析[J]. 华北农学报, 2021, 36(4):37—46.doi: 10.7668/hbnxb.20191913.
|
|
Zhu M X, Zhang Y R, Yang Y S, Yang X L, Wang C Y, Deng Y, Zhao L, Zhang L G, Qin L X, Yang L Y. Identification and expression analysis of NLP transcription factor family of Chenopodium quinoa willd[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4):37—46.
|
[2] |
|
|
Wang Y J. Morphological and biological responses of different soybean varieties to low nitrogen and identification of low nitrogen regulated miRNA[D]. Changsha:Central South University, 2013.
|
[3] |
赵平, 孙谷畴, 彭少麟. 植物氮素营养的生理生态学研究[J]. 生态科学, 1998, 17(2):39—44.
|
|
Zhao P, Sun G C, Peng S L. Study on physiological ecology of plant nitrogen nutrition[J]. Ecological Science, 1998, 17(2):39—44.
|
[4] |
刘天奇, 高红秀, 谢威, 张雪晴, 陈娜娜, 梅雪锋, 邢佳妮, 徐振华, 张忠臣. 水稻分蘖期氮素应答的转录组动态分析[J]. 华北农学报, 2021, 36(1):44—53.doi: 10.7668/hbnxb.20191406.
|
|
Liu T Q, Gao H X, Xie W, Zhang X Q, Chen N N, Mei X F, Xing J N, Xu Z H, Zhang Z C. Dynamic transcriptome analysis of rice response to nitrogen treatment at tillering stage[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1):44—53.
doi: 10.7668/hbnxb.20191406
|
[5] |
|
|
Chen W, Cui Y R, Yang Y, Huangfu Q H, Sun C J, Zhang Y Q. Mechanism of organic acids secreted by roots of Tartary buckwheat under low nitrogen stress[J]. Chinese Journal of Soil Science, 2019, 50(1):149—156.
|
[6] |
李强, 罗延宏, 龙文靖, 孔凡磊, 杨世民, 袁继超. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204—212.doi: 10.11686/cyxb20140425.
|
|
Li Q, Luo Y H, Long W J, Kong F L, Yang S M, Yuan J C. Effect of low nitrogen stress on different low nitrogen tolerance maize cultivars seedling stage growth and physiological characteristics[J]. Acta Prataculturae Sinica, 2014, 23(4):204—212.
doi: 10.11686/cyxb20140425
|
[7] |
|
|
Gao H W, Yang W D, Feng M C, Wang C, Kubar M S, Yue Y. Effects of nitrogen management on nitrogen accumulation and nitrogen uptake and utilization efficiency in winter wheat[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(3):392—395.
|
[8] |
Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in Plant Science, 2006, 11(12):610—617.doi: 10.1016/j.tplants.2006.10.007.
pmid: 17092760
|
[9] |
Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590(7847):600—605.doi: 10.1038/s41586-020-03091-w.
|
[10] |
|
|
Liu X Q, Pang Q W, Ji J Y, Yang C, Gao L L, Guo Y Q. Sequencing of transcriptome and screening of differentially expressed detoxifying enzyme genes of Grapholita molesta treated with insecticides[J]. Journal of Shanxi Agricultural Sciences, 2023, 51(11):1233—1244.
|
[11] |
邵彩虹, 李瑶, 钱银飞, 陈金, 陈先茂, 关贤交, 刘光荣, 彭春瑞, 邱才飞. 氮素胁迫对水稻根系影响的转录组分析[J]. 华北农学报, 2018, 33(1):168—175.doi: 10.7668/hbnxb.2018.01.025.
|
|
Shao C H, Li Y, Qian Y F, Chen J, Chen X M, Guan X J, Liu G R, Peng C R, Qiu C F. Transcriptional analysis of rice root under nitrogen deficiency[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1):168—175.
doi: 10.7668/hbnxb.2018.01.025
|
[12] |
|
|
Zhou H T, Liu H, Yao Y, Yang X S, Gao W J, Yang C, Ren G X. Evaluation of agronomic and quality characters of quinoa cultivated in Zhangjiakou[J]. Journal of Plant Genetic Resources, 2014, 15(1):222—227.
doi: 10.13430/j.cnki.jpgr.2014.01.033
|
[13] |
Ogungbenle H N. Nutritional evaluation and functional properties of quinoa( Chenopodium quinoa)flour[J]. International Journal of Food Sciences and Nutrition, 2003, 54(2):153—158.doi: 10.1080/0963748031000084106.
pmid: 12701372
|
[14] |
|
|
Qi J Q, Chi B, Xie J L, Chen S M, Huang X Y. Study on variations of fiber morphology and tissue proportion of Neosinocalamus affinis culm[J]. Transactions of China Pulp and Paper, 2013, 28(3):1—4.
|
[15] |
|
|
Zhang L, Guo H, Bao A K. The unique salt-secreting structures of halophytes:salt bladders[J]. Plant Physiology Journal, 2019, 55(3):232—240.
|
[16] |
|
|
Zhai F Q, Cai Z Q, Lu J M. Effects of nitrogen application rate on the growth traits in seedlings of different quinoa cultivars[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1139—1145.
|
[17] |
Jarvis D E, Ho Y S, Lightfoot D J, Schmöckel S M, Li B, Borm T J A, Ohyanagi H, Mineta K, Michell C T, Saber N, Kharbatia N M, Rupper R R, Sharp A R, Dally N, Boughton B A, Woo Y H, Gao G, Schijlen E G W M, Guo X J, Momin A A, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold S T, Gojobori T, van der Linden C G, van Loo E N, Jellen E N, Maughan P J, Tester M. The genome of Chenopodium quinoa[J]. Nature, 2017, 542:307—312.doi: 10.1038/nature21370.
|
[18] |
Li H, Li M C, Luo J, Cao X, Qu L, Gai Y, Jiang X N, Liu T X, Bai H, Janz D, Polle A, Peng C H, Luo Z B. N-fertilization has different effects on the growth,carbon and nitrogen physiology,and wood properties of slow-and fast-growing Populus species[J]. Journal of Experimental Botany, 2012, 63(17):6173—6185.doi: 10.1093/jxb/ers271.
|
[19] |
Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years[J]. Annals of Botany, 2005, 96(5):925—930.doi: 10.1093/aob/mci244.
pmid: 16103036
|
[20] |
荣楠, 韩永亮, 荣湘民, 宋海星, 彭建伟, 谢桂先, 张玉平, 张振华. 油菜$NO_{3}^{-}$的吸收、分配及氮利用效率对低氮胁迫的响应[J]. 植物营养与肥料学报, 2017, 23(4):1104—1111.doi: 10.11674/zwyf.16305.
|
|
Rong N, Han Y L, Rong X M, Song H X, Peng J W, Xie G X, Zhang Y P, Zhang Z H. Response of $NO_{3}^{-}$ uptake and distribution and nitrogen use efficiency in oilseed rape to limited nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4):1104—1111.
|
[21] |
Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and-independent pathways[J]. Journal of Experimental Botany, 2021, 72(10):3881—3901.doi: 10.1093/jxb/erab114.
|
[22] |
顾雯雯, 胡亚婷, 韩英, 卞涵佳, 罗兵, 孙海燕, 万能, 杨志刚, 沈宗根. 植物过氧化物酶同工酶的研究进展[J]. 安徽农业科学, 2014, 42(34):12011—12013.doi: 10.13989/j.cnki.0517-6611.2014.34.003.
|
|
Gu W W, Hu Y T, Han Y, Bian H J, Luo B, Sun H Y, Wan N, Yang Z G, Shen Z G. Research progress of peroxidase isozymes in plants[J]. Journal of Anhui Agricultural Sciences, 2014, 42(34):12011—12013.
|
[23] |
Foyer C H, Descourvières P, Kunert K J. Protection against oxygen radicals:an important defence mechanism studied in transgenic plants[J]. Plant,Cell & Environment, 1994, 17(5):507—523.doi: 10.1111/j.1365-3040.1994.tb00146.x.
|
[24] |
郭晓红. 柽柳过氧化物酶基因的序列分析及功能验证[D]. 哈尔滨: 东北林业大学, 2009.
|
|
Guo X H. Sequence and function analysis of peroxidase in Tamarix hispida[D]. Harbin: Northeast Forestry University, 2009.
|
[25] |
|
|
Mu C. Primary research on RNAi-induced silencing of RsPrxl gene in radish[D]. Xinxiang:Henan Normal University, 2012.
|
[26] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F.Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10):490—498.doi: 10.1016/j.tplants.2004.08.009.
pmid: 15465684
|
[27] |
Wang M Q, Wang Y F, Zhang Y F, Li C X, Gong S C, Yan S Q, Li G L, Hu G H, Ren H L, Yang J F, Yu T, Yang K J. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance[J]. Genes & Genomics, 2019, 41(7):781—801.doi: 10.1007/s13258-019-00793-y.
|
[28] |
pmid: 1566333
|
[29] |
Xu J, Tian Y S, Xing X J, Peng R H, Zhu B, Gao J J, Yao Q H. Over-expression of AtGSTU19 provides tolerance to salt,drought and methyl viologen stresses in Arabidopsis[J]. Physiologia Plantarum, 2016, 156(2):164—175.doi: 10.1111/ppl.12347.
|
[30] |
|
[31] |
Kornyeyev D, Logan B A, Payton P, Allen R D, Holaday A S. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ⅱ in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiologia Plantarum, 2001, 113(3):323—331.doi: 10.1034/j.1399-3054.2001.1130304.x.
|
[32] |
Caldwell C R, Turano F J, McMahon M B. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E.coli[J]. Planta, 1998, 204(1):120—126.doi: 10.1007/s004250050237.
pmid: 9443387
|
[33] |
|
|
Guo N, Zhao J H, Gao T S, Bai R Y, Huang X L, Lu J X, Zhang T. Cloning and expression analysis of PGK gene in Brassica napus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(11):2188—2193.
|
[34] |
Watson H C, Walker N P, Shaw P J, Bryant T N, Wendell P L, Fothergill L A, Perkins R E, Conroy S C, Dobson M J, Tuite M F. Sequence and structure of yeast phosphoglycerate kinase[J]. The EMBO Journal, 1982, 1(12):1635—1640.doi: 10.1002/j.1460-2075.1982.tb01366.x.
|
[35] |
Bringloe D H, Rao S K, Dyer T A, Raines C A, Bradbeer J W. Differential gene expression of chloroplast and cytosolic phosphoglycerate kinase in tobacco[J]. Plant Molecular Biology, 1996, 30(3):637—640.doi: 10.1007/BF00049337.
pmid: 8605311
|
[36] |
|
|
Xu Y, Jin Z Q, Song S, Liu J H, Jia C H, Zhang J B, Xu B Y. Molecular cloning and expression analysis of MaCSase gene in banana[J]. Chinese Agricultural Science Bulletin, 2012, 28(34):202—210.
|
[37] |
Bogdanova N, Hell R. Cysteine synthesis in plants:protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 1997, 11(2):251—262.doi: 10.1046/j.1365-313x.1997.11020251.x.
|
[38] |
Saito K, Miura N, Yamazaki M, Hirano H, Murakoshi I. Molecular cloning and bacterial expression of cDNA encoding a plant cysteine synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(17):8078—8082.doi: 10.1073/pnas.89.17.8078.
pmid: 1518833
|
[39] |
Nakamura T, Yamaguchi Y, Sano H. Four rice genes encoding cysteine synthase:isolation and differential responses to sulfur,nitrogen and light[J]. Gene, 1999, 229(1/2): 155—161. doi: 10.1016/s0378-1119(99)00019-0.
|
[40] |
|
|
Lu Q, Mi X J, Cui J Z. Research advances on the mechanism of glyceraldehydes-3-phosphate dehydrogenase in plant[J]. Biotechnology Bulletin, 2013(8):1—6.
|
[41] |
Singh R, Green M R. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase[J]. Science, 1993, 259(5093):365—368.doi: 10.1126/science.8420004.
pmid: 8420004
|
[42] |
Hara M R, Agrawal N, Kim S F, Cascio M B, Fujimuro M, Ozeki Y, Takahashi M, Cheah J H, Tankou S K, Hester L D, Ferris C D, Hayward S D, Snyder S H, Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding[J]. Nature Cell Biology, 2005, 7(7):665—674.doi: 10.1038/ncb1268.
pmid: 15951807
|
[43] |
Sirover M A. Minireview. Emerging new functions of the glycolytic protein,glyceraldehyde-3-phosphate dehydrogenase,in mammalian cells[J]. Life Sciences, 1996, 58(25):2271—2277.doi: 10.1016/0024-3205(96)00123-3.
pmid: 8649216
|
[44] |
Zhang X H, Rao X L, Shi H T, Li R J, Lu Y T. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice[J]. Plant Cell, Tissue and Organ Culture( PCTOC), 2011, 107(1):1—11.doi: 10.1007/s11240-011-9950-6.
|
[45] |
|
|
Qi X H, Xu X W, Luo J J, Gao H J, Xu Q, Lin X J, Zhu B Y, Chen X H. Cloning,characterization and expression of CsGAPDH,a waterlogging responsive gene in cucumber[J]. Acta Horticulturae Sinica, 2011, 38(9):1693—1698.
|
[46] |
|
|
Li H, Li Z L, Li X Y, Li Y H, Lan X G. Selection of reference genes for real-time fluorescence quantitative PCR in different tissues and stigma development from ornamental kale[J]. Bulletin of Botanical Research, 2016, 36(4):565—572.
doi: 10.7525/j.issn.1673-5102.2016.04.012
|
[47] |
|
|
Zhao X, Ma H Q, Chen S W, Xu H Y. Internal reference gene selection for semi quantitative RT-PCR of genes in the second half of grape berry development[J]. Journal of China Agricultural University, 2010, 15(3):7—14.
|
[48] |
|
|
Zhao J F, Du Y W, Wang G H, Li Y F, Zhao G Y, Wang Z H, Wang Y W, Yu A L. Identification of PEPC genes from foxtail millet and its response to abiotic stress[J]. Acta Agronomica Sinica, 2020, 46(5):700—711.
|
[49] |
|
|
Wei S W, Li Y. Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering[J]. Chinese Journal of Biotechnology, 2011, 27(12):1702—1710.
|
[50] |
|
|
Jiao J A. Multiple functions of phosphoenolpyruvate carboxylase in plants[J]. Plant Physiology Communications, 1987, 23(1):40—43.
|
[51] |
|
|
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress[J]. Acta Agronomica Sinica, 2012, 38(2):285—292.
|
[52] |
|
|
Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B. Photosynthetic CO2 assimilation and chlorophyll fluorescence characteristics of PEPC transgenic rice[J]. Chinese Science Bulletin, 2001, 46(5):414—418.
|
[53] |
|
|
Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings[J]. Acta Agronomica Sinica, 2008, 34(7):1220—1226.
|
[54] |
Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize:towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC[J]. Biochimie, 2002, 84(11):1127—1135.doi: 10.1016/s0300-9084(02)00024-x.
pmid: 12595141
|
[55] |
González M C, Sánchez R, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings[J]. Planta, 2003, 216(6):985—992.doi: 10.1007/s00425-002-0951-x.
|
[56] |
Sánchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress[J]. Planta, 2006, 223(5):901—909.doi: 10.1007/s00425-005-0144-5.
|
[57] |
García-Mauriño S, Monreal J A, Alvarez R, Vidal J, Echevarr a C. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare:independence from osmotic stress,involvement of ion toxicity and significance of dark phosphorylation[J]. Planta, 2003, 216(4):648—655.doi: 10.1007/s00425-002-0893-3.
pmid: 12569407
|