[1] Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C. Nitrogen remobilization during leaf senescence:Lessons from Arabidopsis to crops[J]. Journal of Experimental Botany, 2017, 68(10):2513-2529.doi:10.1093/jxb/erw365. [2] Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use[J]. New Phytologist, 2018, 217(1):35-53.doi:10.1111/nph.14876. [3] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10):389-395.doi:10.1016/S1360-1385(98) 01311-9. [4] Mueller N D, West P C, Gerber J S, MacDonald G K, Polasky S, Foley J A. A tradeoff frontier for global nitrogen use and cereal production[J]. Environmental Research Letters, 2014, 9(5):054002.doi:10.1088/1748-9326/9/5/054002. [5] Graf B L, Rojas-Silva P, Rojo L E, Delatorre-Herrera J, Baldeón M E, Raskin I. Innovations in health value and functional food development of quinoa(Chenopodium quinoa willd.) [J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(4):431-445.doi:10.1111/1541-4337.12135. [6] Zurita-Silva A, Fuentes F, Zamora P, Jacobsen S E, Schwember A R. Breeding quinoa(Chenopodium quinoa Willd.):potential and perspectives[J]. Molecular Breeding, 2014, 34(1):13-30.doi:10.1007/s11032-014-0023-5. [7] Jarvis D E, Ho Y S, Lightfoot D J, Schm ckel S M, Li B, Borm T J A, et al.The genome of Chenopodium quinoa[J]. Nature, 2017, 542(7641):307-312.doi:10.1038/nature21370. [8] Hong S Y, Cheon K S, Yoo K O, Lee H O, Cho K S, Suh J T, Kim S J, Nam J H, Sohn H B, Kim Y H. Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C.album[J]. Front Plant Sci, 2017, 8:1696.doi:10.3389/fpls.2017.01696. [9] Yasui Y S, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M, Tanaka K, Mise K, Tanaka T, Mizukoshi H, Mori M, Fujita Y. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties[J]. DNA Research, 2016, 23(6):535-546.doi:10.1093/dnares/dsw037. [10] Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4:1617.doi:10.1038/ncomms2621. [11] Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758):191-195.doi:10.1038/46058. [12] Suzuki W, Konishi M, Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor[J]. Plant Signaling & Behavior, 2013, 8(10):e25975.doi:10.4161/psb.25975. [13] Schauser L, Wieloch W, Stougaard J. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus[J]. Journal of Molecular Evolution, 2005, 60(2):229-237.doi:10.1007/s00239-004-0144-2. [14] Liu M, Chang W, Fan Y H, Sun W, Qu C M, Zhang K, Liu L Z, Xu X F, Tang Z L, Li J N, Lu K. Genome-wide identification and characterization of NODULE-INCEPTION-like protein(NLP) family genes in Brassica napus[J]. International Journal of Molecular sciences, 2018, 19(8):2270.doi:10.3390/ijms19082270. [15] Kumar A, Batra R, Gahlaut V, Gautam T, Kumar S, Sharma M, Tyagi S, Singh K P, Balyan H S, Pandey R, Gupta P K. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat(Triticum aestivum L.) [J]. PLoS One, 2018, 13(12):e0208409.doi:10.1371/journal.pone.0208409. [16] Ge M, Liu Y H, Jiang L, Wang Y C, Lü Y, Zhou L, Liang S Q, Bao H B, Zhao H. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1):95-105.doi:10.1007/s10725-017-0324-x. [17] Camargo A, Llamas A, Schnell R A, Higuera J J, González-Ballester D, Lefebvre P A, Fernández E, Galván A. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas[J]. The Plant Cell, 2007, 19(11):3491-3503.doi:10.1105/tpc.106.045922. [18] Sumimoto H, Kamakura S, Ito T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science ' s STKE, 2007, 401:re6.doi:10.1126/stke.4012007re6. [19] Ho Y S, Burden L M, Hurley J H. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor[J]. The EMBO Journal, 2000, 19(20):5288-5299.doi:10.1093/emboj/19.20.5288. [20] 陈芳, 智一鸣, 肖凯. 小麦转录因子基因TaNF-YB2; 1 表达特征及遗传转化对植株抵御干旱和盐分逆境能力的影响[J]. 华北农学报, 2015, 30(2):1-5.doi:10.7668/hbnxb.2015.02.001. Chen F, Zhi Y M, Xiao K. Expression patterns of wheat transcription factor gene TaNF-YB2; 1 and its genetic effects on plant tolerance to stresses of drought and salt[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(2):1-5. [21] Konishi M, Yanagisawa S. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis[J]. Plant and Cell Physiology, 2011, 52(5):824-836.doi:10.1093/pcp/pcr033. [22] Liu K H, Niu Y J, Konishi M, Wu Y, Du H, Sun C H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654):311-316.doi:10.1038/nature22077. [23] Jian W, Zhang D W, Zhu F, Wang S X, Zhu T, Pu X J, Zheng T, Feng H, Lin H H. Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis[J]. Plant Growth Regulation, 2015, 77(1):99-107.doi:10.1007/s10725-015-0040-3. [24] Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4:1713.doi:10.1038/ncomms2650. [25] Yan D W, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi Y M, Provart N, Guttman D, Krapp A, Rothstein S J, Nambara E. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7:13179.doi:10.1038/ncomms13179. [26] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4:10.doi:10.1186/1471-2229-4-10. [27] Wang Y, Xu W, Chen Z X, Han B, Haque M E, Liu A Z. Gene structure, expression pattern and interaction of nuclear Factor-Y family in castor bean(Ricinus communis) [J]. Planta, 2018, 247(3):559-572.doi:10.1007/s00425-017-2809-2. [28] Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses:Sensing, signaling and transport[J]. Plant and Cell Physiology, 2010, 51(11):1821-1839.doi:10.1093/pcp/pcq156. [29] Jiang S, Sun J, Tian Z, Hu H, Michel E J S, Gao J. Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat(Triticum aestivum L.) [J]. Environmental and Experimental Botany, 2017, 141:28-40.doi:10.1016/j.envexpbot.2017.06.006. [30] 刁卫平, 王述彬, 刘金兵, 潘宝贵, 郭广君, 戈伟. 辣椒WRKY转录因子的鉴别及进化分析[J]. 华北农学报, 2014, 29(6):45-51.doi:10.7668/hbnxb.2014.06.009. Diao W P, Wang S B, Liu J B, Pan B G, Guo G J, Ge W. Identification and phylogenetics analysis of WRKY transcription factors family in pepper[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(6):45-51. [31] 卜华虎, 王晓清, 任志强, 肖建红, 张宁, 杨慧珍. 植物WRKY转录因子家族基因研究进展[J]. 山西农业科学, 2020, 48(7):1158-1163.doi:10.3969/j.issn.1002-2481.2020.07.38. Bu H H, Wang X Q, Ren Z Q, Xiao J H, Zhang N, Yang H Z. Research progress on plant WRKY transcription factors family genes[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(7):1158-1163. [32] Mao X G, Chen S S, Li A, Zhai C C, Jing R L. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J]. PLoS One, 2014, 9(1):e84359.doi:10.1371/journal.pone.0084359. [33] Li B Z, Fan R N, Guo S Y, Wang P T, Zhu X H, Fan Y T, Chen Y X, He K Y, Kumar A, Shi J P, Wang Y, Li L H, Hu Z B, Song C P.The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis[J]. Environmental and Experimental Botany, 2019, 166:103807.doi:10.1016/j.envexpbot.2019.103807. [34] Wang J Z, Zhou J X, Zhang B L, Vanitha J, Ramachandran S, Jiang S Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3):212-231.doi:10.1111/j.1744-7909.2010.01017.x. [35] Chardin C, Girin T, Roudier F, Meyer C, Krapp A. The plant RWP-RK transcription factors:Key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19):5577-5587.doi:10.1093/jxb/eru261. [36] Jagadhesan B, Sathee L, Meena H S, Jha S K, Chinnusamy V, Kumar A, Kumar S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports, 2020, 10(1):9368.doi:10.1038/s41598-020-66338-6. [37] 王寻, 陈西霞, 李宏亮, 张富军, 赵先炎, 韩月彭, 王小非, 郝玉金. 苹果NLP(Nin-Like Protein) 转录因子基因家族全基因组鉴定及表达模式分析[J]. 中国农业科学, 2019, 52(23):4333-4349.doi:10.3864/j.issn.0578-1752.2019.23.014. Wang X, Chen X X, Li H L, Zhang F J, Zhao X Y, Han Y P, Wang X F, Hao Y J. Genome-wide identification and expression pattern analysis of NLP(Nin-Like Protein) transcription factor gene family in apple[J]. Scientia Agricultura Sinica, 2019, 52(23):4333-4349. [38] Ponting C P, Ito T, Moscat J, Diaz-Meco M T, Inagaki F, Sumimoto H. OPR, PC and AID:All in the PB1 family[J]. Trends in Biochemical Sciences, 2002, 27(1):10.doi:10.1016/s0968-0004(01) 02006-0. [39] Lin J S, Li X, Luo Z, Mysore K S, Wen J, Xie F. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11):942-952.doi:10.1038/s41477-018-0261-3. |