[1] |
|
[2] |
Carrino L, Visconti D, Fiorentino N, Fagnano M. Biofuel production with castor bean:a win-win strategy for marginal land[J]. Agronom, 2020, 10(11):1690.doi: 10.3390/agronomy10111690.
URL
|
[3] |
Osorio-González C S, Gómez-Falcon N, Sandoval-Salas F, Saini R, Brar S K, Ramírez A A. Production of biodiesel from castor oil:a review[J]. Energies, 2020, 13(10):2467.doi: 10.3390/en13102467.
URL
|
[4] |
|
[5] |
|
[6] |
Shaaf S, Bretani G, Biswas A, Fontana I M, Rossini L. Genetics of barley tiller and leaf development[J]. Journal of Integrative Plant Biolog, 2019, 61(3):226-256.doi: 10.1111/jipb.12757.
|
[7] |
Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice[J]. Nature, 2003, 422(6932):618-621.doi: 10.1038/nature01518.
|
[8] |
Zhang B, Liu X, Xu W N, Chang J Z, Li A, Mao X G, Zhang X Y, Jing R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat[J]. Scientific Reports, 2015, 5:12211.doi: 10.1038/srep12211.
pmid: 26197925
|
[9] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3):513-520.doi: 10.1046/j.1365-313x.2003.01648.x.
URL
|
[10] |
Diao Y Y, Zhan J J, Zhao Y Y, Liu L S, Liu P P, Wei X, Ding Y P, Sajjad M, Hu W, Wang P, Ge X Y. GhTIE1 regulates branching through modulating the transcriptional activity of TCPs in cotton and Arabidopsis[J]. Front iers in Plant Science, 2019, 10:1348.doi: 10.3389/fpls.2019.01348.
|
[11] |
Zhan J J, Chu Y, Wang Y, Diao Y Y, Zhao Y Y, Liu L S, Wei X, Meng Y, Li F G, Ge X Y. The miR164-GhCUC2-GhBRC1 module regulates plant architecture through abscisic acid in cotton[J]. Plant Biotechnology Journal, 2021, 19(9):1839-1851.doi: 10.1111/pbi.13599.
pmid: 33960609
|
[12] |
Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice[J]. The Plant Cell, 2009, 21(4):1095-1108.doi: 10.1105/tpc.108.065425.
URL
|
[13] |
Zhang Z Y, Li J J, Yao G X, Zhang H L, Dou H J, Shi H L, Sun X M, Li Z C. Fine mapping and cloning of the grain number per-panicle gene( Gnp4)on chromosome 4 in rice( Oryza sativa L.)[J]. Agricultural Sciences in China, 2011, 10(12):1825-1833.doi: 10.1016/S1671-2927(11)60182-X.
URL
|
[14] |
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X H, Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. The Plant Cell, 2011, 23(9):3276-3287.doi: 10.1105/tpc.111.088765.
pmid: 21963665
|
[15] |
Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6):545-549.doi: 10.1038/ng.592.
|
[16] |
Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6):541-544.doi: 10.1038/ng.591.
|
[17] |
Zhang Q, Xie J Y, Zhu X Y, Ma X Q, Yang T, Khan N U, Zhang S Y, Liu M S, Li L, Liang Y T, Pan Y H, Li D T, Li J J, Li Z C, Zhang H L, Zhang Z Y. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice[J]. Plant Biotechnology Journal, 2023, 21(5):1044-1057.doi: 10.1111/pbi.14017.
URL
|
[18] |
Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, Liu G X, Zhang X Y, Liu C M, Chu J F, Zhao G Y, Xia C, Jia J Z, Sun J Q, Kong X Y, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat[J]. Nature Communications, 2023, 14(1):836.doi: 10.1038/s41467-023-36271-z.
pmid: 36788238
|
[19] |
Liang Q J, Chen L Y, Yang X, Yang H, Liu S L, Kou K, Fan L, Zhang Z F, Duan Z B, Yuan Y Q, Liang S, Liu Y C, Lu X T, Zhou G A, Zhang M, Kong F J, Tian Z X. Natural variation of Dt2 determines branching in soybean[J]. Nature Communications, 2022, 13(1):6429.doi: 10.1038/s41467-022-34153-4.
|
[20] |
Sun Z X, Su C, Yun J X, Jiang Q, Wang L X, Wang Y N, Cao D, Zhao F, Zhao Q S, Zhang M C, Zhou B, Zhang L, Kong F J, Liu B H, Tong Y P, Li X. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b[J]. Plant Biotechnology Journal, 2019, 17(1):50-62.doi: 10.1111/pbi.12946.
URL
|
[21] |
Luo J, Hang J N, Wu B L, Wei X L, Zhao Q Z, Fang Z M. Co-overexpression of genes for nitrogen transport,assimilation,and utilization boosts rice grain yield and nitrogen use efficiency[J]. The Crop Journal, 2023, 11(3):785-799.doi: 10.1016/j.cj.2023.01.005.
URL
|
[22] |
Kanti M, Anjani K, Usha Kiran B, Vivekananda K. Agro-morphological and molecular diversity in castor( Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands,India[J]. Czech Journal of Genetics and Plant Breeding, 2015, 51(3):96-109.doi: 10.17221/205/2014-CJGPB.
URL
|
[23] |
Atinafu D M, Alayachew S A, Jida Z. Path coefficient analysis of some prominent agronomic traits in castor( Ricinus communis L.) germplasm[J]. Journal of Experimental Agriculture International, 2019, 41(3):1-12.doi: 10.9734/jeai/2019/v41i330401.
|
[24] |
|
|
Gu S L, Lu J N, Huang J X, Yang T, He X L, Li D N, Yeboah A, Yin X G. Evaluation of harvest index in castor hybrids combinations[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4):860-868.
|
[25] |
Aher A R, Patel J A, Patel M P, Patel K V. Genetic analysis of seed yield and component characters over environments in castor( Ricinus communis L.)[J]. Electronic Journal of Plant Breeding, 2015, 6(1):141-149.doi: 10.5958/0975-928X.2017.00011.4.
|
[26] |
Pardshi P P, Sakhare S B, Ingle K P, Khelurkar V C. Genetic architecture studies of yield and its components in castor[J]. Electronic Journal of Plant Breeding, 2018, 9(3):790-796.doi: 10.5958/0975-928X.2018.00098.4.
URL
|
[27] |
|
|
Tang Y M, Liu S G. Analysis on combining ability of Castor main agronomic characters[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2013, 28(5):540-545.
|
[28] |
严兴初. 蓖麻种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2007.
|
|
Yan X C. Castor bean germplasm resource description specifi-cation and standard data[M]. Beijing: China Agriculture Press, 2007.
|
[29] |
Cullings K W. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies[J]. Molecular Ecolog, 1992, 1(4):233-240.doi: 10.1111/j.1365-294x.1992.tb00182.x.
URL
|
[30] |
Yeboah A, Lu J N, Ting Y, Karikari B, Gu S L, Xie Y, Liu H Y, Yin X G. Genome-wide association study identifies loci,beneficial alleles,and candidate genes for cadmium tolerance in castor( Ricinus communis L.)[J]. Industrial Crops and Products, 2021, 171:113842.doi: 10.1016/j.indcrop.2021.113842.
URL
|
[31] |
Liu S, Yin X G, Lu J N, Liu C, Bi C, Zhu H B, Shi Y Z, Zhang D, Wen D Y, Zheng J, Cui Y, Li W J. The first genetic linkage map of Ricinus communis L.based on genome-SSR markers[J]. Industrial Crops and Products, 2016, 89:103-108.doi: 10.1016/j.indcrop.2016.04.063.
URL
|
[32] |
Chan A P, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones K M, Redman J, Chen G, Cahoon E B, Gedil M, Stanke M, Haas B J, Wortman J R, Fraser-Liggett C M, Ravel J, Rabinowicz P D. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature Biotechnolog, 2010, 28(9):951-956.doi: 10.1038/nbt.1674.
|
[33] |
Yadav P, Saxena K B, Hingane A, Kumar C V S, Kandalkar V S, Varshney R K, Saxena R K. An "Axiom Cajanus SNP Array" based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea[J]. BMC Genomics, 2019, 20(1):235.doi: 10.1186/s12864-019-5595-3.
|
[34] |
Wu J, Mao L L, Tao J C, Wang X X, Zhang H J, Xin M, Shang Y Q, Zhang Y N, Zhang G H, Zhao Z T, Wang Y M, Cui M S, Wei L M, Song X L, Sun X Z. Dynamic quantitative trait loci mapping for plant height in recombinant inbred line population of upland cotton[J]. Frontiers in Plant Science, 2022, 13:914140.doi: 10.3389/fpls.2022.914140.
URL
|
[35] |
Wang H, Jia J, Cai Z D, Duan M M, Jiang Z, Xia Q J, Ma Q B, Lian T X, Nian H. Identification of quantitative trait loci(QTLs)and candidate genes of seed iron and zinc content in soybean [ Glycine max (L.) Merr.][J]. BMC Genomics, 2022, 23(1):146.doi: 10.1186/s12864-022-08313-1.
|
[36] |
McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development,mapping and applications in rice genetics and breeding[M]// Oryza:from molecule to plant. Dordrecht: Springer Nether Lands, 1997:89-99.doi: 10.1007/978-94-011-5794-0_9.
|
[37] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[38] |
盖钧镒. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003.
|
|
Gai J Y. Genetic system of quantitative traits in plants[M]. Beijing: Science Press, 2003.
|
[39] |
Srivastava R, Upadhyaya H D, Kumar R, Daware A, Basu U, Shimray P W, Tripathi S, Bharadwaj C, Tyagi A K, Parida S K. A multiple QTL-seq strategy delineates potential genomic loci governing flowering time in chickpea[J]. Frontiers in Plant Science, 2017, 8:1105.doi: 10.3389/fpls.2017.01105.
pmid: 28751895
|
[40] |
Yang X H, Xia X Z, Zhang Z Q, Nong B X, Zeng Y, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Pan Y H, Dai G X, Deng G F, Li D T. Identification of anthocyanin biosynthesis genes in rice pericarp using PCAMP[J]. Plant Biotechnology Journal, 2019, 17(9):1700-1702.doi: 10.1111/pbi.13133.
pmid: 31004548
|
[41] |
Uchida N, Igari K, Bogenschutz N L, Torii K U, Tasaka M. Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-LRR-type UNI proteins[J]. Plant and Cell Physiolog, 2011, 52(5):804-814.doi: 10.1093/pcp/pcr032.
|
[42] |
Schwechheimer C, Serino G, Deng X W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function[J]. The Plant Cell, 2002, 14(10):2553-2563.doi: 10.1105/tpc.003434.
URL
|
[43] |
Rivarola M, Foster J T, Chan A P, Williams A L, Rice D W, Liu X Y, Melake-Berhan A, Huot Creasy H H, Puiu D, Rosovitz M J, Khouri H M, Beckstrom-Sternberg S M, Allan G J, Keim P, Ravel J, Rabinowicz P D. Castor bean organelle genome sequencing and worldwide genetic diversity analysis[J]. PLoS One, 2011, 6(7):e21743.doi: 10.1371/journal.pone.0021743.
URL
|
[44] |
Li H, Hearne S, Bänziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations[J]. Heredit, 2010, 105(3):257-267.doi: 10.1038/hdy.2010.56.
|
[45] |
|
|
Jia X Y, Zhu J J, Zhao H X, Wang S J, Li M, Wang G Y. QTL analysis and candidate gene annotation for cotton yield related traits[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2):54-61.
doi: 10.7668/hbnxb.20192084
|
[46] |
Li Z Q, Xu Y H. Bulk segregation analysis in the NGS era:a review of its teenage years[J]. The Plant Journal, 2022, 109(6):1355-1374.doi: 10.1111/tpj.15646.
URL
|
[47] |
Parida S K, Srivastava R, Bajaj D. A genome-wide mQTL-seq scan identifies potential molecular signatures regulating plant height in chickpea[J]. Plant Molecular Biology Reporter, 2017, 35(2):273-286.doi: 10.1007/s11105-016-1021-z.
URL
|