[1] 俞桂林. 香米的遗传特点及营养品质[J]. 浙江农业科学, 1987(3):113-115. doi:10.16178/j.issn.0528-9017.1987.03.004. Y G L. Genetic characteristics and nutritional quality of fragrant rice[J]. Journal of Zhejiang Agricultural Sciences, 1987(3):113-115. [2] 吕艳梅, 谭伟平, 肖层林. 稻米香味研究综述[J]. 湖南农业科学, 2010(11):19-20, 23. doi:10.3969/j.issn.1006-060X.2010.11.007. Lü Y M, Tang W P, Xiao C L. Summarization of the scent of scented rice[J]. Hunan Agricultural Sciences, 2010(11):19-20, 23. [3] 黄晓群, 张淑华, 赵海新, 刘传雪, 张兰民, 王瑞英, 关世武, 王翠. 黑龙江省水稻品种现状分析及研发对策[J]. 黑龙江农业科学, 2009(6):40-43. doi:10.3969/j.issn.1002-2767.2009.06.014. Hang X Q, Zhang S H, Zhao H X, Liu C X, Zhang L M, Wang R Y, Guan S W, Wang C. Analysis conditions of rice varieties and tactics of study in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2009(6):40-43. [4] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7):1850-1861. doi:10.1105/tpc.108.058917. [5] Buttery R G, Ling L C, Juliano B O, Turnbaugh J G. Cooked rice aroma and 2-acetyl-1-pyrroline[J]. Journal of Agricultural and Food Chemistry, 1983, 31(4):823-826. doi:10.1021/jf00118a036. [6] Vanavichit A, Yoshihashi T. Chapter 2-Molecular aspects of fragrance and aroma in rice[J]. Advances in Botanical Research, 2010, 56:49-73. doi:10.1016/B978-0-12-381518-7.00002-9. [7] Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L, Hu P S. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice[J]. Plant Breeding, 2011, 130(2):172-176. doi:10.1111/j.1439-0523.2009.01764.x. [8] Shao G N, Tang S Q, Chen M L, Wei X J, He J W, Luo J, Jiao G A, Hu Y C, Xie L H, Hu P S. Haplotype variation at Badh2, the gene determining fragrance in rice[J]. Genomics, 2013, 101(2):157-162. doi:10.1016/j.ygeno.2012.11.010. [9] Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13(6):791-800. doi:10.1111/pbi.12312. [10] Bibikova M, Beumer K, Trautman J K, Carroll D. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764. doi:10.1126/science.1079512. [11] Bedell V M, Wang Y, Campbell J M, Poshusta T L, Starker C G, Krug R G, Tan W F, Penheiter S G, Ma A C, Leung A Y H, Fahrenkrug S C, Carlson D F, Voytas D F,Clark K J, Essner J J, Ekker S C. In vivo genome editing using a high-efficiency TALEN system[J]. Nature, 2012, 491(7422):114-118. doi:10.1038/nature11537. [12] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. doi:10.1126/science.1258096. [13] Smih F, Rouet P, Romanienko P J, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells[J]. Nucleic Acids Research, 1995, 23(24):5012-5019. doi:10.1093/nar/23.24.5012. [14] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405. doi:10.1016/j.tibtech.2013.04.004. [15] Wang H Y, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. doi:10.1016/j.cell.2013.04.025. [16] Auer T O, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish[J]. Methods, 2014, 69(2):142-150. doi:10.1016/j.ymeth.2014.03.027. [17] Mali P, Yang L H, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. doi:10.1126/science.1232033. [18] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10):1229-1232. doi:10.1038/cr.2013.114. [19] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951. doi:10.1038/nbt.2969. [20] Liang Z, Zhang K, Chen K L, Gao C X. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. Journal of Genetics and Genomics, 2014, 41(2):63. doi:10.1016/j.jgg.2013.12.001. [21] Fan D, Liu T T, Li C F, Jiao B, Li S, Hou Y S, Luo K M. Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation[J]. Scientific Reports, 2015, 5:12217. doi:10.1038/srep12217. [22] Miao J, Guo D S, Zhang J Z, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system[J]. Cell Research, 2013, 23(10):1233-1236. doi:10.1038/cr.2013.123. [23] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10):1229-1232. doi:10.1038/cr.2013.114. [24] Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014, 12(6):797-807. doi:10.1111/pbi.12200. [25] Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Xi J J, Qiu J L, Cao C X. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(8):686-688. doi:10.1038/nbt.2650. [26] Li M R, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7(12217):377. doi:10.3389/fpls.2016.00377. [27] 王加峰, 郑才敏, 刘维, 罗文龙, 王慧, 陈志强, 郭涛. 基于CRISPR/Cas9技术的水稻千粒质量基因tgw6突变体的创建[J]. 作物学报, 2016, 42(8):1160-1167. doi:10.3724/SP.J.1006.2016.01160. Wng J F, Zheng C M, Liu W, Luo W L, Wang H, Cheng Z Q, Guo T. Construction of tgw6 mutants in rice based on CRISPR/Cas9 technology[J]. Acta Agronomica Sinica, 2016, 42(8):1160-1167. [28] Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants[J]. Scientia Sinica, 2018,48(7):783-794. doi:10.1360/N052018-00069. [29] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284. doi:10.1016/j.molp.2015.04.007. [30] Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G. CRISPR-GE:A convenient software toolkit for CRISPR-Based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249. doi:10.1016/j.molp.2017.06.004. [31] Liu W Z, Xie X R, Ma X L, Li J, Chen J H, Liu Y G. DSDecode:A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9):1431-1433. doi:10.1016/j.molp.2015.05.009. [32] Dhulappanavar C V. Inheritance of scent in rice[J]. Euphytica, 1976, 25(1):659-662. doi:10.1007/BF00041603. [33] 朱立宏. 关于我国水稻高产育种的我见[J]. 南京农业大学学报, 2007, 30(1):129-135. doi:10.3321/j.issn:1000-2030.2007.01.026. Zu L H. Some critical considerations on rice high-yielding breeding in China[J]. Journal of Nanjing Agricultural University, 2007, 30(1):129-135. [34] Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice[J]. Plant and Cell Physiology, 2015, 56(1):41-47. [35] Tang X, Liu G Q, Zhou J P, Ren Q R, You Q, Tian L, Xin X H, Zhong Z H, Liu B L, Zheng X L, Zhang D W, Malzahn A, Gong Z Y, Qi Y P, Zhang T, Zhang Y. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1(Cas12a) nucleases in rice[J]. Genome Biology, 2018, 19(1):84. doi:10.1186/s13059-018-1458-5. |