[1] Farhi J, Tian G, Fang H, Maxwell D, Xing T, Tian L N.Histone deacetylase HD2D is involved in regulating plant development and flowering time in Arabidopsis[J]. Plant Signaling & Behavior, 2017, 12(18):e1300742. doi:10.1080/15592324.2017.1300742. [2] Pandey R, Müller A, Napoli C A, Selinger D A, Pikaard C S, Richards E J, Bender J, Mount D W, Jorgensen R A.Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Research, 2002, 30(23):5036-5055. doi:10.1093/nar/gkf660. [3] Yang C, Shen W J, Chen H F, Chu L T, Xu Y C, Zhou X C, Liu C L, Chen C M, Zeng J H, Liu J, Li Q F, Gao C J, Charron J B, Luo M.Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean[J]. BMC Plant Biology, 2018, 18:226. doi:10.1186/s12870-018-1454-7. [4] Wu K Q, Tian L N, Malik K, Brown D, Miki B.Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana[J]. The Plant Journal, 2010, 22(1):19-27. doi:10.1046/j.1365-313x.2000.00711.x. [5] Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. The Plant Journal, 2006, 46(1):124-133. doi:10.111/j.1365-313x.2006.02678.x. [6] Luo M, Wang Y Y, Liu X C, Yang S G, Lu Q, Cui Y H, Wu K Q.HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(8):3297-3306. doi:10.1093/jxb/ers059. [7] Hu Y F, Qin F J, Huang L M,Sun Q W, Li C, Zhao Y, Zhou D X. Rice histone deacetylase genes display specific expression patterns and developmental functions[J]. Biochemical and Biophysical Research Communications, 2009, 388(2):266-271. doi:10.1016/j.bbrc.2009.07.162. [8] Fu W, Wu K Q, Duan J. Sequence and expression analysis of histone deacetylases in rice[J]. Biochemical and Biophysical Research Communications, 2007, 356(4):843-850. doi:10.1016/j. bbrc.2007.03.010. [9] Zhao J H, Zhang J X, Zhang W, Wu K L, Zheng F, Tian L N, Liu X C, Duan J. Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice[J]. Frontiers in Plant Science, 2015, 5:764. doi:10.3389/fpls.2014.00764. [10] Ding B, Bellizzi M R, Ning Y, Meyers B C, Wang G L. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone h4 acetylation of defense-related genes in rice[J]. The Plant Cell, 2012, 24(9):3783-3794. doi:10.1105/tpc. 112.101972. [11] Luo M, Liu X C, Singh P, Cui Y H, Zimmerli L, Wu K Q. Chromatin modifications and remodeling in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2):129-136. doi:10.1016/j.bbagrm.2011.06.008. [12] Roberts G C, Smith C W. Alternative splicing:combinatorial output from the genome[J]. Current Opinion in Chemical Biology, 2002, 6(3):375-383. doi:10.1016/S1367-5931(02)00320-4. [13] Zhang R X, Calixto C, Marquez Y, Venhuizen P, Tzioutziou N A, Guo W B, Spensley M, Entizne J C, Lewandowska D, Ten H S, Frei Dit F N, Hirt H, James A B, Nimmo H G, Barta A, Kalyna M, Brown J W S. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing[J]. Nucleic Acids Research, 2017, 45(9):5061-5073. doi:10.1093/nar/gkx267. [14] Chomala S, Feng G Q, Chavarro C, Barbazuk W B. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3:33. doi:10.3389/fbioe.2015.00033. [15] Filichkin S A, Hamilton M, Dharmawardhana P D, Singh S K, Sullivan C, Ben-Hur A, Reddy A S N, Taiswal P.Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching[J]. Frontiers in Plant Science, 2018, 9:5. doi:10.3389/fpls.2018.00005. [16] Jiang J F, Liu X N, Liu C H, Liu G T, Li S H, Wang L J. Integrating omics and alternative splicing reveals insights into grape response to high temperature[J]. Plant Physiology, 2017, 173(2):1502-1518. doi:10.1104/pp.16.01305. [17] Hartmann L, Drewe-Boβ P, Wieβner T, Wagner G, Geue S, Lee H C, Obermüller D M, Kahles A, Behr J, Sinz F H, Rätsch G, Wachter A. Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis[J]. The Plant Cell, 2016, 28(11):2715-2734. doi:10.1105/tpc.16.00508. [18] Filichkin S A, Cumbie J S, Dharmawardhana P, Jaiswal P, Chang J H, Palusa S G, Reddy A S, Megraw M, Mockler T C. Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis[J]. Molecular Plant, 2015, 8(2):207-227. doi:10.1016/j.molp.2014.10.011. [19] Leviatan N, Alkan N, Leshkowitz D, Fluhr R. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray[J]. PLoS One, 2013, 8(6):e66511. doi:10.1371/journal.pone.0066511. [20] Staiger D, Brown J W. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. The Plant Cell, 2013, 25(10):3640-3656. doi:10.1105/tpc. 113.113803. [21] Quesada V, Macknight R, Dean C, Simpson G G.Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time[J]. EMBO Journal, 2003, 22(12):3142-3152. doi:10.1093/emboj/cdg305. [22] 吴蔚蔚,童普国,王鑫,阎新,李绍波,欧阳解秀. 水稻OsGPRP 家族基因克隆及其对非生物胁迫的响应[J]. 华北农学报, 2018, 33(1):39-44. doi:10.7668/hbnxb.2018.01.007. W W W, Tong P G, Wang X, Yan X, Li S B, Ouyang J X. Cloning of OsGPRP family genes and their responses to abiotic stresses in rice[J]. Acta Agriculturae Boreali-sinica, 2018, 33(1):39-44. [23] Wang X, Zhang H, Shao L Y, Yan X, Peng H, Ouyang J X, Li S B. Expression and function analysis of a rice OsHSP40 gene under salt stress[J]. Genes & Genomics, 2019, 41(2):175-182. doi:10.1007/s13258-018-0749-2. [24] Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(52):18781-18786. doi:10.1073/pnas.1407147112. [25] Li S, Yamada M, Han X, Ohler U, Benfey P N. High resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation[J]. Developmental Cell,2016, 39(4):508-522. doi:10.1016/j.devcel.2016.10.012. [26] Chen M L, Luo J, Shao G N, Wei X J, Tang S Q, Sheng Z H, Song J, Hu P S.Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1[J]. Plant Cell Reports, 2012, 31(5):863-872. doi:10.1007/s00299-011-1207-7. |