[1] |
Li Y, Xiao J H, Chen L L, Huang X H, Cheng Z K, Han B, Zhang Q F, Wu C Y.Rice functional genomics research:Past decade and future[J]. Molecular Plant, 2018, 11(3):359-380.doi: 10.1016/j.molp.2018.01.007.
|
[2] |
Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11:2629.doi: 10.1038/s41467-020-16403-5.
|
[3] |
Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H.The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8):1266-1280.doi: 10.1016/j.molp.2021.04.011.
|
[4] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2016, 2:15195.doi: 10.1038/nplants.2015.195.
|
[5] |
Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y.Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. The New Phytologist, 2020, 227(2):629-640.doi: 10.1111/nph.16540.
|
[6] |
Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PNAS, 2010, 107(45):19579-19584.doi: 10.1073/pnas.1014419107.
|
[7] |
Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C.OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15(1):28.doi: 10.1186/s12915-017-0365-7.
|
[8] |
Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12):1666-1680.doi: 10.1038/cr.2012.151.
|
[9] |
Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Abdul Rehman R M, Li J J, Zhang H L, Li Z C.Alternative splicing of OsLG3b controls grain length and yield in Japonica rice[J]. Plant Biotechnology Journal, 2018, 16(9):1667-1678.doi: 10.1111/pbi.12903.
|
[10] |
Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q.GL3.3,a novel QTL encoding a GSK3/SHAGGY-like kinase,epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5):754-756.doi: 10.1016/j.molp.2018.03.006.
|
[11] |
Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F.A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3:17064.doi: 10.1038/nplants.2017.64.
|
[12] |
Misra G, Badoni S, Anacleto R, Graner A, Alexandrov N, Sreenivasulu N.Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice[J]. Scientific Reports, 2017, 7:12478.doi: 10.1038/s41598-017-12778-6.
|
[13] |
Omboki R B, Zheng Y, Chen Z W, Guan H Z, Tang W Q, Huang L K, Xie X F, Wu W R.Pooled mapping of quantitative trait loci conferring male sterility-conditioned glume split in rice( Oryza sativa)[J]. Plant Breeding, 2018, 137(6):848-856.doi: 10.1111/pbr.12643.
|
[14] |
Akabane T, Suzuki N, Tsuchiya W, Yoshizawa T, Matsumura H, Hirotsu N, Katoh E.Expression,purification and crystallization of TGW6,which limits grain weight in rice[J]. Protein Expression and Purification, 2021, 188:105975.doi: 10.1016/j.pep.2021.105975.
|
[15] |
Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J.The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice[J]. The Plant Cell, 2021, 33(10):3331-3347.doi: 10.1093/plcell/koab194.
|
[16] |
Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B.The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4):2077-2090.doi: 10.1104/pp.18.01574.
|
[17] |
Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B.OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4):447-456.doi: 10.1038/ng.3518.
|
[18] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8):944-948.doi: 10.1038/ng.3346.
|
[19] |
Kang Y J, Shim K C, Lee H S, Jeon Y A, Kim S H, Kang J W, Yun Y T, Park I K, Ahn S N.Fine mapping and candidate gene analysis of the quantitative trait locus gw8.1 associated with grain length in rice[J]. Genes & Genomics, 2018, 40(4):389-397.doi: 10.1007/s13258-017-0640-6.
|
[20] |
Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9:1240.doi: 10.1038/s41467-018-03616-y.
|
[21] |
|
[22] |
Wang Z K, Zeng D D, Qin R, Liu J L, Shi C H, Jin X L.A novel and pleiotropic factor SLENDER GRAIN3 is involved in regulating grain size in rice[J]. Rice Science, 2018, 25(3):132-141.doi: 10.1016/j.rsci.2018.02.004.
|
[23] |
Lloyd A, Plaisier C L, Carroll D, Drews G N.Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J]. PNAS, 2005, 102(6):2232-2237.doi: 10.1073/pnas.0409339102.
|
[24] |
Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Research, 2011, 39(12):e82.doi: 10.1093/nar/gkr218.
|
[25] |
Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.doi: 10.1126/science.1231143.
|
[26] |
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P.CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.doi: 10.1126/science.1138140.
|
[27] |
Liu L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q Y, Bartlett M, Jackson D.Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nature Plants, 2021, 7(3):287-294.doi: 10.1038/s41477-021-00858-5.
|
[28] |
Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão F J L, Parrott W, Vianna G R.Two efficient CRISPR/Cas9 systems for gene editing in soybean[J]. Transgenic Research, 2021, 30(3):239-249.doi: 10.1007/s11248-021-00246-x.
|
[29] |
Jing C S, Wei M, Fang P, Song R T, Qi W W.Pollen-specific CRISPR/Cas9 system to increase heritable gene mutations in maize[J]. Agriculture, 2021, 11(8):751.doi: 10.3390/agriculture11080751.
|
[30] |
Dinkins R D, Hancock J, Coe B L, May J B, Goodman J P, Bass W T, Liu J G, Fan Y L, Zheng Q L, Zhu H Y.Isoflavone levels,nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover[J]. Plant Cell Reports, 2021, 40(3):517-528.doi: 10.1007/s00299-020-02647-4.
|
[31] |
Bottero E, Massa G, González M, Stritzler M, Tajima H, G mez C, Frare R, Feingold S, Blumwald E, Ayub N, Soto G.Efficient CRISPR/Cas9 genome editing in alfalfa using a public germplasm[J]. Frontiers in Agronomy, 2021, 3:661526.doi: 10.3389/fagro.2021.661526.
|
[32] |
Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, Liu X Z, Zhang S W, He W, Li F, Li J P, Wan X Y.CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants[J]. Plant Biotechnology Journal, 2021, 19(9):1769-1784.doi: 10.1111/pbi.13590.
|
[33] |
Cai Z D, Xian P Q, Cheng Y B, Ma Q B, Lian T X, Nian H, Ge L F.CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6[J]. Plant Biotechnology Journal, 2021, 19(10):1898-1900.doi: 10.1111/pbi.13673.
|
[34] |
Zhang J S, Zhang H, Botella J R, Zhu J K.Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5):369-375.doi: 10.1111/jipb.12620.
|
[35] |
Zheng S Y, Ye C J, Lu J Q, Liufu J M, Lin L, Dong Z Q, Li J, Zhuang C X.Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system[J]. International Journal of Molecular Sciences, 2021, 22(17):9554.doi: 10.3390/ijms22179554.
|
[36] |
Zeng Y F, Wen J Y, Zhao W B, Wang Q, Huang W C.Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3,and OsMYB30 with the CRISPR-Cas9 system[J]. Frontiers in Plant Science, 2020, 10:1663.doi: 10.3389/fpls.2019.01663.
|
[37] |
Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G.CRISPR-GE:A convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.doi: 10.1016/j.molp.2017.06.004.
|
[38] |
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G.A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.doi: 10.1016/j.molp.2015.04.007.
|
[39] |
Rowland L J, Nguyen B.Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants[J]. BioTechniques, 1993, 14(5):734-736.doi: 10.1002/bip.360330513.
|
[40] |
Liu W Z, Xie X R, Ma X L, Li J, Chen J H, Liu Y G.DSDecode:A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9):1431-1433.doi: 10.1016/j.molp.2015.05.009.
|
[41] |
莫天宇, 徐善斌, 邹德堂, 王敬国, 刘化龙, 孙健, 贾琰, 赵宏伟, 郑洪亮.利用CRISPR/Cas9技术敲除OsEIL1和OsEIL2基因改良水稻耐盐性[J]. 华北农学报, 2021, 36(1):71-80.doi: 10.7668/hbnxb.20190798.
|
|
Mo T Y,Xu S B,Zou D T,Wang J G,Liu H L,Sun J,Jia Y,Zhao H W,Zheng H L.Enhancing salt tolerance of rice by knocking out OsEIL1 and OsEIL2 via CRISPR/Cas9 system[J].Acta Agriculturae Boreali-Sinica,2021,36(1):71-80.
|
[42] |
孙慧宇, 宋佳, 王敬国, 刘化龙, 孙健, 莫天宇, 徐善斌, 郑洪亮, 邹德堂.利用CRISPR/cas9技术编辑 Badh2基因改良粳稻香味[J]. 华北农学报, 2019, 34(4):1-8.doi: 10.7668/hbnxb.201751503.
|
|
Sun H Y,Song J,Wang J G,Liu H L,Sun J,Mo T Y,Xu S B,Zheng H L,Zou D T.Editing Badh2 gene to improve the fragrance of Japonica rice by CRISPR/Cas9 technology[J].Acta Agriculturae Boreali-Sinica,2019,34(4):1-8.
URL
|
[43] |
Lou D J, Wang H P, Liang G, Yu D Q.OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science, 2017, 8:993.doi: 10.3389/fpls.2017.00993.
|
[44] |
Usman B, Nawaz G, Zhao N, Liao S Y, Qin B X, Liu F, Liu Y G, Li R B.Programmed editing of rice( Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins[J]. International Journal of Molecular Sciences, 2020, 22(1):249.doi: 10.3390/ijms22010249.
|
[45] |
Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G.Quantitative regulation of waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12):2385-2387.doi: 10.1111/pbi.13427.
|
[46] |
Chen Y Y, Zhu A K, Xue P, Wen X X, Cao Y R, Wang B F, Zhang Y, Liaqat S, Cheng S H, Cao L Y, Zhang Y X.Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice[J]. Rice Science, 2020, 27(5):405-413.doi: 10.1016/j.rsci.2019.12.010.
|
[47] |
Shen L, Wang C, Fu Y P, Wang J J, Liu Q, Zhang X M, Yan C J, Qian Q, Wang K J.QTL editing confers opposing yield performance in different rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(2):89-93.doi: 10.1111/jipb.12501.
|
[48] |
|
|
Shen L,Li J,Fu Y P,Wang J J,Hua Y F,Jiao X Z,Yan C J,Wang K J.Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system[J].Chinese Journal of Rice Science,2017,31(3):223-231.
|
[49] |
张晨. 水稻GS9基因与其它粒形基因遗传互作及育种应用研究[D].扬州:扬州大学,2018.
|
|
Zhang C.Study on genetic interaction and breeding application of rice GS9 gene with other grain shape genes[D].Yangzhou:Yangzhou University,2018.
|
[50] |
|
|
Xu S B,Zheng H L,Liu L F,Bu Q Y,Li X F,Zou D T.Improvement of grain shape and fragrance by using CRISPR/Cas9 system[J].Chinese Journal of Rice Science,2020,34(5):406-412.
|