[1] Ma C Q, Wang Y G, Gu D, Nan J D, Chen S X, Li H Y. Overexpression of S-Adenosyl-l-Methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress[J].International Journal of Molecular Science, 2017,18(4):847. doi:10.3390/ijms18040847. [2] Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L,Lachaal M.Salt stress mitigation by seed priming with UV-C in lettuce plants:growth, antioxidant activity and phenolic compounds[J].Plant Physiology and Biochemistry, 2014,83:126-133.doi:10.1016/j.plaphy.2014.07.019. [3] Munns R, Tester M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology, 2008,59:651-681. doi:10.1146/annurev.arplant.59.032607.092911. [4] 杨劲松.中国盐渍土研究的发展历程与展望[J]. 土壤学报,2008,45(5):837-845. doi:10.3321/j.issn:0564-3929.2008.05.010. Yang J S. Development and prospect of the research on salt affected soils in China[J]. Acta Pedologica Sinica,2008,45(5):837-845. [5] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030[J].Plant Molecular Biology, 2005,59(1):1-6. doi:10.1007/s11103-005-2159-5. [6] Li Y, Xiao J H, Chen L L, Huang X H, Cheng Z K, Han B, Zhang Q F, Wu C Y. Rice functional genomics research:past decade and future[J].Molecular Plant, 2018,11(3):359-380. doi:10.1016/j.molp.2018.01.007. [7] Lutts S, Kinet J M, Bouharmont J. Changes in plant response to NaCl during development of rice(Oryza sativa L.) varzieties differing in salinity resistance[J]. Journal of Experimental Botany, 1995,46(293):1843-1852. doi:10.1093/jxb/46.12.1843. [8] Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J].Genes Development, 2009,23(15):1805-1817. doi:10.1101/gad.1812409. [9] El Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández J L, Bundó M, Mendoza I, Mieulet D, Lalanne E, Lee S Y, Yun D J, Guiderdoni E, Aguilar M, Leidi E O, Pardo J M, Quintero F J. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice[J].Plant Physiology, 2019,180(2):1046-1065. doi:10.1104/pp.19.00324. [10] Suzuki K, Costa A, Nakayama H, Katsuhara M, Shinmyo A, Horie T. OsHKT2;2/1-mediated Na+ influx over K+ uptake in roots potentially increases toxic Na+ accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress[J].Journal of Plant Research, 2016,129(1):67-77. doi:10.1007/s10265-015-0764-1. [11] Qiu D Y, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z,Wang S P. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance[J].Molecular Plant, 2008,1(3):538-551. doi:10.1093/mplant/ssn012. [12] Hou X, Xie K B, Yao J L, Qi Z Y, Xiong L Z.A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance[J].Proceedings of the National Academy of Sciences of the United States of America, 2009,106(15):6410-6415. doi:10.1073/pnas.0901940106. [13] Zhu J K. Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247-273. doi:10.1146/annurev.arplant.53.091401.143329. [14] Erpen L, Devi H S, Grosser J W, Dutt M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J].Plant Cell, Tissue and Organ Culture, 2017,132(1):1-25. doi:10.1007/s11240-017-1320-6. [15] Mao C Z, Wang S M, Jia Q J, Wu P. OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component[J].Plant Molecular Biology,2006,61(1-2):141-152.doi:10.1007/s11103-005-6184-1. [16] Yang C, Ma B, He S J, Xiong Q, Duan K X, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015,169(1):148-165. doi:10.1104/pp.15.00353. [17] Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Research, 2011,39(17):7879-7879. doi:10.1093/nar/gkr739. [18] Lloyd A, Plaisier C L, Carroll D, Drews G N.Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of Americ a, 2005,102(6):2232-2237. doi:10.1073/pnas.0409339102. [19] Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013,339(6121):819-823.doi:10.1126/science.1231143. [20] Barrangou R,Fremaux C,Deveau H,Richards M,Boyaval P,Moineau S, Romero D A, Horvath P.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science, 2007,315(5819):1709-1712.doi:10.1126/science.1138140. [21] Puchta H. The repair of double-strand breaks in plants:mechanisms and consequences for genome evolution[J].Journal of Experimental Botany, 2005,56(409):1-14. doi:10.1093/jxb/eri025. [22] Huang L Y, Zhang R, Huang G F, Li Y X, Melaku G, Zhang S L, Chen H T, Zhao Y J, Zhang J, Zhang Y S, Hu F Y. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system[J].The Crop Journal, 2018,6(5):475-481. doi:10.1016/j.cj.2018.05.005. [23] Miao C B, Xiao L H, Hua K, Zou C S, Zhao Y, Bressan R A, Zhu J K. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J].Proceedings of the National Academy of Sciences of the United States of America, 2018,115(23):6058-6063. doi:10.1073/pnas.1804774115. [24] Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X, Xi J J, Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nature Biotechnology, 2013,31(8):686-688. doi:10.1038/nbt.2650. [25] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J].Nature Biotechnology, 2014,32(9):947-951. doi:10.1038/nbt.2969. [26] Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean[J].BMC Plant Biology, 2019,19(1):311. doi:10.1186/s12870-019-1906-8. [27] Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnology, 2015,15:16. doi:10.1186/s12896-015-0131-2. [28] Liang Z, Zhang K, Chen K L, Gao C X. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J].Journal of Genetics and Genomics, 2014,41(2):63-68. doi:10.1016/j.jgg.2013.12.001. [29] Svitashev S, Young J K, Schwartz C, Gao H R, Falco S C, Cigan A M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J].Plant Physiol, 2015,169(2):931-945. doi:10.1104/pp.15.00793. [30] Li A X,Jia S G,Yobi A,Ge Z X,Sato S J,Zhang C,Angelovici R,Clemente T E,Holding D R.Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum[J].Plant Physiology, 2018, 177(4):1425-1438. doi:10.1104/pp.18.00200. [31] Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, Wang K J.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J].Nat Biotechnol, 2019,37(3):283-286. doi:10.1038/s41587-018-0003-0. [32] Tang L, Mao B G, Li Y K, Lü Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017,7(1):14438. doi:10.1038/s41598-017-14832-9. [33] Zhang A N, Liu Y, Wang F M, Li T F, Chen Z H, Kong D Y, Bi J G, Zhang F Y, Luo X X, Wang J H, Tang J J, Yu X Q, Liu G L, Luo L J. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular Breeding, 2019,39(3):47. doi:10.1007/s11032-019-0954-y. [34] Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G. CRISPR-GE:a convenient software toolkit for CRISPR-based genome editing[J].Molecular Plant, 2017,10(9):1246-1249. doi:10.1016/j.molp.2017.06.004. [35] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J].Molecular Plant, 2015,8(8):1274-1284. doi:10.1016/j.molp.2015.04.007. [36] Rowland L J, Nguyen B. Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants[J].Biotechniques, 1993,14(5):734-736. doi:10.1002/bip.360330513. [37] Liu W Z,Xie X R,Ma X L,Li J,Chen J H,Liu Y G.DSDecode:a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J].Molecular Plant, 2015,8(9):1431-1433.doi:10.1016/j.molp.2015.05.009. [38] 方玉洁,覃永华,熊立仲.水稻叶片Na+,K+含量测定(火焰光度法)[J]. Bio-Protocol, 2018:Bio-101 e1010149. doi:10.21769/BioProtoc.1010149. Fang Y J, Qin Y H, Xiong L Z.Determination of Na+, K+ content in rice leaf(flame photometric method)[J]. Bio-Protocol, 2018:Bio-101e1010149. [39] Li M R, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G L, Li H Q. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in Plant Science, 2016,7:377. doi:10.3389/fpls.2016.00377. [40] Tang X, Liu G Q, Zhou J P, Ren Q R, You Q, Tian L, Xin X H, Zhong Z H, Liu B L, Zheng X L, Zhang D W, Malzahn A, Gong Z Y, Qi Y P, Zhang T, Zhang Y. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1(Cas12a) nucleases in rice[J].Genome Biology, 2018,19:84. doi:10.1186/s13059-018-1458-5. [41] Tsai S Q, Joung J K. Defining and improving the genome-wide specificities of CRISPR Cas9 nucleases[J].Nature Reviews Genetics, 2016,17(5):300-312. doi:10.1038/nrg.2016.28. |