[1] |
doi: 10.3864/j.issn.0578-1752.2015.04.03
|
|
Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica, 2015, 48(4):646-660.
|
[2] |
Jameson P E, Song J C. Cytokinin:a key driver of seed yield[J]. Journal of Experimental Botany, 2016, 67(3):593-606.doi: 10.1093/jxb/erv461.
doi: 10.1093/jxb/erv461
URL
|
[3] |
Cortleven A, Leuendorf J E, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants[J]. Plant,Cell & Environment, 2019, 42(3):998-1018.doi: 10.1111/pce.13494.
doi: 10.1111/pce.13494
|
[4] |
Wang Y P, Shen W Z, Chan Z L, Wu Y. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2015, 6:1004.doi: 10.3389/fpls.2015.01004.
doi: 10.3389/fpls.2015.01004
|
[5] |
Wang Y P, Li L, Ye T T, Zhao S J, Liu Z, Feng Y Q, Wu Y. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression[J]. The Plant Journal, 2011, 68(2):249-261.doi: 10.1111/j.1365-313X.2011.04683.x.
doi: 10.1111/j.1365-313X.2011.04683.x.
|
[6] |
Huang X Z, Zhang X Y, Gong Z Z, Yang S H, Shi Y T. ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis[J]. The Plant Journal, 2017, 89(2):354-365.doi: 10.1111/tpj.13389.
doi: 10.1111/tpj.13389
URL
|
[7] |
Guan C M, Wang X C, Feng J, Hong S L, Liang Y, Ren B, Zuo J R. Cytokinin antagonizes abscisic acid-mediated inhibition of Cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis[J]. Plant Physiology, 2014, 164(3):1515-1526.doi: 10.1104/pp.113.234740.
doi: 10.1104/pp.113.234740
URL
|
[8] |
Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A. Metabolic signatures of germination triggered by kinetin in Medicago truncatula[J]. Scientific Reports, 2019, 9(1):10466.doi: 10.1038/s41598-019-46866-6.
doi: 10.1038/s41598-019-46866-6
URL
|
[9] |
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis[J]. Nature, 2001, 409(6823):1060-1063.doi: 10.1038/35059117.
doi: 10.1038/35059117
URL
|
[10] |
Vescovi M, Riefler M, Gessuti M, Novák O, Schmülling T, Lo Schiavo F. Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4[J]. Journal of Experimental Botany, 2012, 63(7):2825-2832.doi: 10.1093/jxb/ers008.
doi: 10.1093/jxb/ers008
pmid: 22312114
|
[11] |
Doroshenko A S, Danilova M N, Kudryakova N V, Soloviev A A, Kusnetsov V V. Cytokinin membrane receptors participate in regulation of plastid genome expression in the skotomorphogenesis[J]. Doklady Biochemistry and Biophysics, 2016, 469(1):294-297.doi: 10.1134/S1607672916040153.
doi: 10.1134/S1607672916040153
pmid: 27599515
|
[12] |
Franco-Zorrilla J M, Martin A C, Solano R, Rubio V, Leyva A, Paz-Ares J. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis[J]. The Plant Journal, 2002, 32(3):353-360.doi: 10.1046/j.1365-313x.2002.01431.x.
doi: 10.1046/j.1365-313x.2002.01431.x.
|
[13] |
Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H. A novel regulatory pathway of sulfate uptake in Arabidopsis roots:Implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5):779-789.doi: 10.1111/j.1365-313X.2004.02079.x.
doi: 10.1111/j.1365-313X.2004.02079.x.
URL
|
[14] |
Tran L S P, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid,drought,and salt stress in Arabidopsis[J]. PNAS, 2007, 104(51):20623-20628.doi: 10.1073/pnas.0706547105.
doi: 10.1073/pnas.0706547105
URL
|
[15] |
Jansen R, van Embden J D, Gaastra W, Schouls L M. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575.doi: 10.1046/j.1365-2958.2002.02839.x.
doi: 10.1046/j.1365-2958.2002.02839.x.
pmid: 11952905
|
[16] |
Wang Y P, Wang J F, Guo S G, Tian S W, Zhang J, Ren Y, Li M Y, Gong G Y, Zhang H Y, Xu Y. CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon[J]. Horticulture Research, 2021, 8(1):70.doi: 10.1038/s41438-021-00506-1.
doi: 10.1038/s41438-021-00506-1
URL
|
[17] |
Zhou J P, Yuan M Z, Zhao Y X, Quan Q, Yu D, Yang H, Tang X, Xin X H, Cai G Z, Qian Q, Qi Y P, Zhang Y. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice[J]. Plant Biotechnology Journal, 2021, 19(6):1240-1252.doi: 10.1111/pbi.13544.
doi: 10.1111/pbi.13544
URL
|
[18] |
Shi S J, An L L, Mao J J, Aluko O O, Ullah Z, Xu F Z, Liu G S, Liu H B, Wang Q. The CBL-interacting protein kinase NtCIPK23 positively regulates seed germination and early seedling development in tobacco( Nicotiana tabacum L.)[J]. Plants(Basel), 2021, 10(2):323.doi: 10.3390/plants10020323.
doi: 10.3390/plants10020323
URL
|
[19] |
doi: 10.1360/SSV-2019-0197
|
|
Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Science in China, 2019, 49(10):1227-1281.
|
[20] |
Han C, Yang P F. Studies on the molecular mechanisms of seed germination[J]. Proteomics, 2015, 15(10):1671-1679.doi: 10.1002/pmic.201400375.
doi: 10.1002/pmic.201400375
URL
|
[21] |
Dandekar T, Naseem M. Auxins and cytokinins in plant biology:methods and protocols[M]. New York: Springer New York, 2017.doi: 10.1007/978-1-4939-6831-2.
doi: 10.1007/978-1-4939-6831-2
|
[22] |
Nishiyama R, Watanabe Y, Fujita Y, Le D T, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran L S P. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought,salt and abscisic acid responses,and abscisic acid biosynthesis[J]. The Plant Cell, 2011, 23(6):2169-2183.doi: 10.1105/tpc.111.087395.
doi: 10.1105/tpc.111.087395
pmid: 21719693
|