[1] |
Sun T P. Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development[J]. Plant Physiology, 2010, 154(2):567-570.doi: 10.1104/pp.110.161554.
doi: 10.1104/pp.110.161554
URL
|
[2] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059):693-698.doi: 10.1038/nature04028.
doi: 10.1038/nature04028
URL
|
[3] |
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 2006, 18(12):3399-3414.doi: 10.1105/tpc.106.047415.
doi: 10.1105/tpc.106.047415
URL
|
[4] |
Nakajima M, Shimada A, Takashi Y, Kim Y C, Park S H, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I. Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J, 2006, 46(5):880-889.doi: 10.1111/j.1365-313x.2006.02748.x.
doi: 10.1111/j.1365-313x.2006.02748.x
URL
|
[5] |
Hollender C A, Hadiarto T, Srinivasan C, Scorza R, Dardick C. A brachytic dwarfism trait(dw)in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c[J]. New Phytologist, 2016, 210(1):227-239.doi: 10.1111/nph.13772.
doi: 10.1111/nph.13772
pmid: 26639453
|
[6] |
Mauriat M, Moritz T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation[J]. The Plant Journal, 2009, 58(6):989-1003.doi: 10.1111/j.1365-313x.2009.03836.x.
doi: 10.1111/j.1365-313X.2009.03836.x
pmid: 19228336
|
[7] |
Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen R D. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1[J]. Plant Molecular Biology, 2008, 68(1/2):1-16.doi: 10.1007/s11103-008-9347-z.
doi: 10.1007/s11103-008-9347-z
URL
|
[8] |
Yue C, Zeng J M, Cao H L, Hao X Y, Zhang Z F, Wang X C, Yang Y J. Cloning and expression analysis of gibberellin receptor gene CSGD1a in tea plant( Camellia sinensis)[J]. Acta Agronomica Sinica, 2013, 39(4):599-608.doi: 10.3724/SP.J.1006.2013.00599.
doi: 10.3724/SP.J.1006.2013.00599
URL
|
[9] |
刘洋, 张艺琼, 刘冠财, 任彩霞, 王茂林. 甘蓝型油菜赤霉素受体基因的克隆与表达[J]. 西北植物学报, 2011, 31(5):868-874.
|
|
Liu Y, Zhang Y Q, Liu G C, Ren C X, Wang M L. Cloning and expression analysis of a gibberellin receptor BnGID1B gene from Brassica napus L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(5):868-874.
|
[10] |
doi: 10.16420/j.issn.0513-353x.2011.07.006
|
|
Li X L, Guo X P, Shen Y Y, Cao Q Q, Feng Y Q, Qin L. Preliminary identification of GAs-deficient short male catkin mutant and expression analysis of CmGID1 in Castanea mollissima[J]. Acta Horticulturae Sinica, 2011, 38(7):1251-1258.
|
[11] |
doi: 10.16420/j.issn.0513-353x.2013.05.006
|
|
Wang X C, Wu W M, Fang J G, Qian Y M, Wang C, Song C N, Zhao M Z. Isolation,subcellular localization and expression analysis of gibberellin receptor gene VvGID1A from grapevine[J]. Acta Horticulturae Sinica, 2013, 40(5):839-848.
|
[12] |
Wang T, Zhang H Y, Zhu H L. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops[J]. Horticulture Research, 2019, 6:77.doi: 10.1038/s41438-019-0159-x.
doi: 10.1038/s41438-019-0159-x
pmid: 31240102
|
[13] |
Illouz-Eliaz N, Ramon U, Shohat H, Blum S, Livne S, Mendelson D, Weiss D. Multiple gibberellin receptors contribute to phenotypic stability under changing environments[J]. The Plant Cell, 2019, 31(7):1506-1519.doi: 10.1105/tpc.19.00235.
doi: 10.1105/tpc.19.00235
pmid: 31076539
|
[14] |
张玉星. 果树栽培学各论:北方本[M]. 3版. 北京: 中国农业出版社, 2003.
|
|
Zhang Y X. Monographs on fruit tree cultivation[M]. 3 rd Edition. Beijing: China Argicultural Press, 2003.
|
[15] |
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y X, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol Plant, 2015, 8(8):1274-1284.doi: 10.1016/j.molp.2015.04.007.
doi: 10.1016/j.molp.2015.04.007
URL
|
[16] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.doi: 10.1093/bioinformatics/btu817.
doi: 10.1093/bioinformatics/btu817
URL
|
[17] |
doi: 10.13305/j.cnki.jts.2016.04.010
|
|
Tang Y W, Liu L P, Wang R X, Chen Y H, Liu Z H, Liu S Q. Development of a CRISPR/Cas9 constructed for genome editing of caffeine synthase in Camellia sinensis[J]. Journal of Tea Science, 2016, 36(4):414-426.
|
[18] |
doi: 10.7666/d.Y2886926
|
|
Lin J. Establishing regeneration and genetic transformation system of Pyrus betulaefolia cotyledons[D]. Urumqi: Xinjiang Agricultural University, 2015.
|
[19] |
庞宏光. 梨棕榈酰基转移酶基因家族鉴定及PbPAT14功能研究[D]. 保定: 河北农业大学, 2020.
|
|
Pang H G. Identification of pear palmitoyl transferases gene family and functional study of PbPAT14[D]. Baoding: Hebei Agricultural University, 2020.
|
[20] |
Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H Y, Tanahashi T, Hasebe M, Banks J A, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens[J]. The Plant Cell, 2007, 19(10):3058-3079.doi: 10.1105/tpc.107.051524.
doi: 10.1105/tpc.107.051524
URL
|
[21] |
叶家其, 张毓婷, 傅鹰, 周明兵, 汤定钦. 毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析[J]. 生物工程学报, 2019, 35(4):647-666.doi: 10.13345/j.cjb.180424.
doi: 10.13345/j.cjb.180424
|
|
Ye J Q, Zhang Y T, Fu Y, Zhou M B, Tang D Q. Genome-wide identification and expression analysis of gibberellin biosynthesis,metabolism and signaling family genes in Phyllostachys edulis[J]. Chinese Journal of Biotechnology, 2019, 35(4):647-666.
|
[22] |
Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments[J]. The Plant Cell, 2009, 21(5):1328-1339.doi: 10.1105/tpc.109.066969.
doi: 10.1105/tpc.109.066969
URL
|
[23] |
Cheng J, Zhang M M, Tan B, Jiang Y J, Zheng X B, Ye X, Guo Z J, Xiong T T, Wang W, Li J D, Feng J C. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach[J]. Plant Biotechnology Journal, 2019, 17(9):1723-1735.doi: 10.1111/pbi.13094.
doi: 10.1111/pbi.13094
pmid: 30776191
|
[24] |
doi: 10.16420/j.issn.0513-353x.2020-1829
|
|
Yang F, Yang Q S, Gao Y H, Ma Y J, Xu Y, Teng Y W, Bai S L. Establishment of dual-cut CRISPR/Cas9 gene editing system in pear calli[J]. Acta Horticulturae Sinica, 2021, 48(5):873-882.
|
[25] |
Pang H G, Yan Q, Zhao S L, He F, Xu J F, Qi B X, Zhang Y X. Knockout of the S-acyltransferase gene,PbPAT14,confers the dwarf yellowing phenotype in first generation pear by ABA accumulation[J]. International Journal of Molecular Sciences, 2019, 20(24):E6347.doi: 10.3390/ijms20246347.
doi: 10.3390/ijms20246347
|
[26] |
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers in Plant Science, 2019, 10:40.doi: 10.3389/fpls.2019.00040.
doi: 10.3389/fpls.2019.00040
pmid: 30787936
|
[27] |
Ren C, Liu Y F, Guo Y C, Duan W, Fan P G, Li S H, Liang Z C. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters[J]. Horticulture Research, 2021, 8:52.doi: 10.1038/s41438-021-00489-z.
doi: 10.1038/s41438-021-00489-z
pmid: 33642575
|