[1] |
doi: 10.16819/j.1001-7216.2021.201209
|
|
Xu X B, An P H, Guo T J, Han D, Jia W, Huang W X. Research progresses on response mechanisms and control measures of cadmium stress in rice[J]. Chinese Journal of Rice Science, 2021, 35(5):415-426.
doi: 10.16819/j.1001-7216.2021.201209
|
[2] |
doi: 10.27177/d.cnki.gjxnu.2019.000131
|
|
Zou W L. Genetic dissection of Cd tolerance at seedling stage and grain low Cd accumulation in rice(Orazy sativa L.)[D]. Nanchang: Jiangxi Agricultural University, 2019.
|
[3] |
doi: 10.19802/j.issn.1007-9084.2020100
|
|
Zhang D W, Du Y Y, Wu J F, Zhou D G, Liu L L, Liu Z S, Yan M L. Effect of cadmium stress on plant growth and gene expression in Brassica napus seedlings[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(4):613-622.
|
[4] |
doi: 10.27205/d.cnki.gltec.2021.000034
|
|
Leng Y. Molecular mechanism of mung bean seedlings in response to cadmium stress[D]. Lanzhou: Lanzhou Jiaotong University, 2021
|
[5] |
Kumar S, Sharma A. Cadmium toxicity:Effects on human reproduction and fertility[J]. Reviews on Environmental Health, 2019, 34(4):327-338.doi: 10.1515/reveh-2019-0016.
doi: 10.1515/reveh-2019-0016
URL
|
[6] |
Yan Y F, Lestari P, Lee K J, Kim M Y, Lee S H, Lee B W. Identification of quantitative trait loci for cadmium accumulation and distribution in rice( Oryza sativa)[J]. Genome, 2013, 56(4):227-232.doi: 10.1139/gen-2012-0106.
doi: 10.1139/gen-2012-0106
URL
|
[7] |
Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7[J]. Journal of Experimental Botany, 2009, 61(3):923-934.doi: 10.1093/jxb/erp360.
doi: 10.1093/jxb/erp360
URL
|
[8] |
doi: 10.7666/d.y2045758
|
|
Luo X T. QTL mapping for seedling Cd tolerance in rice (Oryza sativa L.)and analysis of QTL × environment interaction[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007.
|
[9] |
Pan X W, Li Y C, Liu W Q, Liu S X, Min J, Xiong H B, Dong Z, Duan Y H, Yu Y Y, Li X X. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study[J]. Scientific Reports, 2020, 10:11791.doi: 10.1038/s41598-020-68742-4.
doi: 10.1038/s41598-020-68742-4
pmid: 32678216
|
[10] |
Li C S, Wang P, Wu G L, Wang Y N, Cheng Q, Cai Y C, Zhou D H, Li C J, Zhang X Y, Tan J G, Li C J, He H H, Bian J M. Additive and epistatic QTL on cadmium(Cd)tolerance associated with seed germinating ability in rice[J]. Journal of Plant Growth Regulation, 2021, 40(5):2115-2123.doi: 10.1007/s00344-020-10258-2.
doi: 10.1007/s00344-020-10258-2
URL
|
[11] |
Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma J F. A major quantitative trait locus controlling cadmium translocation in rice( Oryza sativa)[J]. The New Phytologist, 2009, 182(3):644-653.doi: 10.1111/j.1469-8137.2009.02784.x.
doi: 10.1111/j.1469-8137.2009.02784.x
URL
|
[12] |
Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1):645.doi: 10.1038/s41467-018-03088-0.
doi: 10.1038/s41467-018-03088-0
URL
|
[13] |
Tian S Q, Liang S, Qiao K, Wang F H, Zhang Y X, Chai T Y. Co-expression of multiple heavy metal transporters changes the translocation,accumulation,and potential oxidative stress of Cd and Zn in rice( Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380:120853.doi: 10.1016/j.jhazmat.2019.120853.
doi: 10.1016/j.jhazmat.2019.120853
URL
|
[14] |
Chen J, Huang X Y, Salt D E, Zhao F J. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain[J]. The New Phytologist, 2020, 226(3):838-850.doi: 10.1111/nph.16404.
doi: 10.1111/nph.16404
URL
|
[15] |
Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium( LCD),a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15):5727-5734.doi: 10.1093/jxb/err300.
doi: 10.1093/jxb/err300
pmid: 21908474
|
[16] |
Yan L, Chen C, Zhu Y C, La Y P, Zhang S J, Ding G Y, Qu J J. Cadmium-induced phytotoxicity and tolerance response in the low-Cd accumulator of Chinese cabbage( Brassica pekinensis L.)seedlings[J]. International Journal of Phytoremediation, 2021, 23(13):1365-1375.doi: 10.1080/15226514.2021.1897778.
doi: 10.1080/15226514.2021.1897778
URL
|
[17] |
李炜星, 欧阳林娟, 文文, 熊玉毅, 徐伟清, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 徐杰, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 水稻幼苗耐镉胁迫QTL的定位研究[J]. 江西农业大学学报, 2019, 41(1):19-24.doi: 10.13836/j.jjau.2019003.
doi: 10.13836/j.jjau.2019003
|
|
Li W X, Ouyang L J, Wen W, Xiong Y Y, Xu W Q, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Xu J, Zhou D H, He H H, Sun X T, Zhu C L. Identification of QTL for cadmium tolerance at seedling stage of rice(Oryza sativa L.)[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(1):19-24.
|
[18] |
doi: 10.19586/j.2095-2341.2020.0135
|
|
Huang S Y, Tan J G, Wang P, Jiang N F, He H H, Bian J M. Mapping QTLs related to tolerance to cadmium in rice during germination by backcross recombinant inbred lines[J]. Current Biotechnology, 2021, 11(2):176-181.
|
[19] |
赵均良, 张少红, 杨梯丰, 董景芳, 刘清, 付华, 毛兴学, 刘斌. 181份多样性籼稻种质苗期和成熟期镉积累表型评价[J]. 分子植物育种, 2018, 16(18):6080-6087.doi: 10.13271/j.mpb.016.006080.
doi: 10.13271/j.mpb.016.006080
|
|
Zhao J L, Zhang S H, Yang T F, Dong J F, Liu Q, Fu H, Mao X X, Liu B. Phenotype evaluation of Cd accumulation of 181 diverse indica germplasm at seedling and mature stages[J]. Molecular Plant Breeding, 2018, 16(18):6080-6087.
|
[20] |
Liu X Y, Chen S L, Chen M X, Zheng G Y, Peng Y, Shi X L, Qin P, Xu X Y, Teng S. Association study reveals genetic loci responsible for arsenic,cadmium and lead accumulation in rice grain in contaminated farmlands[J]. Frontiers in Plant Science, 2019, 10:61.doi: 10.3389/fpls.2019.00061.
doi: 10.3389/fpls.2019.00061
URL
|
[21] |
Zhao J, He Y Q, Li X Y, Weng X N, Feng D F, Ying J F, Wang Z F. An integrated RNA-Seq and physiological study reveals gene responses involving in the initial imbibition of seed germination in rice[J]. Plant Growth Regulation, 2020, 90(2):249-263.doi: 10.1007/s10725-019-00567-2.
doi: 10.1007/s10725-019-00567-2
URL
|
[22] |
Lei L, Zheng H L, Bi Y L, Yang L M, Liu H L, Wang J G, Sun J, Zhao H W, Li X W, Li J M, Lai Y C, Zou D T. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice( Oryza sativa L.)using QTL-seq and RNA-seq[J]. Rice, 2020, 13(1):55.doi: 10.1186/s12284-020-00416-1.
doi: 10.1186/s12284-020-00416-1
pmid: 32778977
|
[23] |
Wei H B, Lou Q J, Xu K, Zhou L G, Chen S J, Chen L, Luo L J. Pattern of alternative splicing different associated with difference in rooting depth in rice[J]. Plant and Soil, 2020, 449(1/2):233-248.doi: 10.1007/s11104-020-04451-1.
doi: 10.1007/s11104-020-04451-1
URL
|
[24] |
Ereful N C, Liu L Y, Greenland A, Powell W, MacKay I, Leung H. RNA-seq reveals differentially expressed genes between two indica inbred rice genotypes associated with drought-yield QTLs[J]. Agronomy, 2020, 10(5):621.doi: 10.3390/agronomy10050621.
doi: 10.3390/agronomy10050621
URL
|
[25] |
Chen L, Shi S L, Jiang N F, Khanzada H, Wassan G M, Zhu C L, Peng X S, Xu J, Chen Y J, Yu Q Y, He X P, Fu J R, Chen X R, Hu L F, Ouyang L J, Sun X T, He H H, Bian J M. Genome-wide analysis of long non-coding RNAs affecting roots development at an early stage in the rice response to cadmium stress[J]. BMC Genomics, 2018, 19(1):460.doi: 10.1186/s12864-018-4807-6.
doi: 10.1186/s12864-018-4807-6
pmid: 29902991
|
[26] |
Yang J, Guo Z H, Luo L X, Gao Q L, Xiao W M, Wang J F, Wang H, Chen Z Q, Guo T. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq[J]. The Crop Journal, 2021, 9(2):360-371.doi: 10.1016/j.cj.2020.08.010.
doi: 10.1016/j.cj.2020.08.010
URL
|
[27] |
Mortier V, Fenta B A, Martens C, Rombauts S, Holsters M, Kunert K, Goormachtig S. Search for nodulation-related CLE genes in the genome of Glycine max[J]. Journal of Experimental Botany, 2011, 62(8):2571-2583.doi: 10.1093/jxb/erq426.
doi: 10.1093/jxb/erq426
URL
|
[28] |
Chen Z, Gallie D R. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance[J]. Plant Physiology, 2005, 138(3):1673-1689.doi: 10.1104/pp.105.062000.
doi: 10.1104/pp.105.062000
pmid: 15951482
|
[29] |
Neill S O, Gould K S, Kilmartin P A, Mitchell K A, Markham K R. Antioxidant activities of red versus green leaves in Elatostema rugosum[J]. Plant Cell and Environment, 2002, 25:539-547.doi: 10.1046/J.1365-3040.2002.00837.X.
doi: 10.1046/J.1365-3040.2002.00837.X
URL
|
[30] |
Roychoudhury A, Basu S, Sengupta D N. Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity[J]. Acta Physiologiae Plantarum, 2012, 34(3):835-847.doi: 10.1007/s11738-011-0881-y.
doi: 10.1007/s11738-011-0881-y
URL
|
[31] |
Bai B, Wu J, Sheng W T, Zhou B, Zhou L J, Zhuang W, Yao D P, Deng Q Y. Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress[J]. International Journal of Molecular Sciences, 2015, 16(5):11398-11416.doi: 10.3390/ijms160511398.
doi: 10.3390/ijms160511398
pmid: 25993302
|
[32] |
Shin J H, Yoshimoto K, Ohsumi Y, Jeon J S, An G. OsATG10b,an autophagosome component,is needed for cell survival against oxidative stresses in rice[J]. Molecules and Cells, 2009, 27(1):67-74.doi: 10.1007/s10059-009-0006-2.
doi: 10.1007/s10059-009-0006-2
URL
|
[33] |
Xia K F, Liu T, Ouyang J, Wang R, Fan T, Zhang M Y. Genome-wide identification,classification,and expression analysis of autophagy-associated gene homologues in rice( Oryza sativa L.)[J]. DNA Research, 2011, 18(5):363-377.doi: 10.1093/dnares/dsr024.
doi: 10.1093/dnares/dsr024
URL
|
[34] |
Ammar W B, Nouairi I, Zarrouk M, Jemal F. The effect of cadmium on lipid and fatty acid biosynthesis in tomato leaves[J]. Biologia, 2008, 63(1):86-93.doi: 10.2478/s11756-008-0002-6.
doi: 10.2478/s11756-008-0002-6
URL
|
[35] |
Lin C Y, Trinh N N, Fu S F, Hsiung Y C, Chia L C, Lin C W, Huang H J. Comparison of early transcriptome responses to copper and cadmium in rice roots[J]. Plant Molecular Biology, 2013, 81(4/5):507-522.doi: 10.1007/s11103-013-0020-9.
doi: 10.1007/s11103-013-0020-9
URL
|