| [1] |
李洁, 闫硕, 张芳, 李小波, 任彬元, 胡同乐, 国立耘, 窦道龙, 王晓丹. 近年来中国马铃薯晚疫病的时空演变特征及防控情况分析[J]. 植物保护学报, 2021, 48(4):703-711.doi: 10.13802/j.cnki.zwbhxb.2021.2021132.
|
|
Li J, Yan S, Zhang F, Li X B, Ren B Y, Hu T L, Guo L Y, Dou D L, Wang X D. Analysis of spatio-temporal characteristics and control of potato late blight in recent years in China[J]. Journal of Plant Protection, 2021, 48(4):703-711.
|
| [2] |
|
|
Liu D M. Sensitivity of Alternaria alternata from Shandong Province to four fungicides and evaluation of its resistance risk to mefentrifluconazole[D]. Taian: Shandong Agricultural University,2024.
|
| [3] |
Li Q, Liu S P, Zhao Y, Yan J, Guan C F, Zhao D M, Zhang D, Wang J H, Pan Y, Zhu J H, Yang Z H. StSAMT,a Solanum tuberosum salicylic acid carboxyl methyltransferase-like gene,negatively regulates plant response to Alternaria solani[J]. Scientia Horticulturae, 2024, 337:113492.doi: 10.1016/j.scienta.2024.113492.
|
| [4] |
Brouwer S M, Odilbekov F, Burra D D, Lenman M, Hedley P E, Grenville-Briggs L, Alexandersson E, Liljeroth E, Andreasson E. Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus Alternaria solani[J]. Plant Molecular Biology, 2020, 104(1):1-19.doi: 10.1007/s11103-020-01019-6.
|
| [5] |
Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.doi: 10.1038/nature05286.
|
| [6] |
Saxena I, Srikanth S, Chen Z. Cross talk between H 2O 2 and interacting signal molecules under plant stress response[J]. Frontiers in Plant Science, 2016, 7:570.doi: 10.3389/fpls.2016.00570.
|
| [7] |
Abera Gebrie S. Biotrophic fungi infection and plant defense mechanism[J]. Journal of Plant Pathology & Microbiology, 2016, 7(378):2.doi: 10.4172/2157-7471.1000378.
|
| [8] |
Akhtar N, Perween S, Ansari A, Ahmad M. Life style of fungi from biotrophy to necrotrophy and saprotrophy[J]. International Journal of Agricultural and Applied Sciences, 2020, 1(1):92-102.doi: 10.52804/ijaas2020.1118.
|
| [9] |
Dodds P N, Rathjen J P. Plant immunity:towards an integrated view of plant pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8):539-548.doi: 10.1038/nrg2812.
|
| [10] |
Barna B, Fodor J, Harrach B D, Pogány M, Király Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens[J]. Plant Physiology and Biochemistry, 2012, 59:37-43.doi: 10.1016/j.plaphy.2012.01.014.
|
| [11] |
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, Churngchow N. Salicylic acid induces resistance in rubber tree against Phytophthora palmivora[J]. International Journal of Molecular Sciences, 2018, 19(7):1883.doi: 10.3390/ijms19071883.
|
| [12] |
Yuan H B, Jin C, Pei H C, Zhao L F, Li X, Li J L, Huang W T, Fan R C, Liu W D, Shen Q H. The powdery mildew effector CSEP0027 interacts with barley catalase to regulate host immunity[J]. Frontiers in Plant Science, 2021, 12:733237.doi: 10.3389/fpls.2021.733237.
|
| [13] |
Walz A, Zingen-Sell I, Theisen S, Kortekamp A. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum[J]. European Journal of Plant Pathology, 2008, 120(4):317-330.doi: 10.1007/s10658-007-9218-5.
|
| [14] |
Huang W Y, Jiao B L, Ji C L, Peng Q D, Zhou J Y, Yang Y T, Xi D H. Catalases mediate tobacco resistance to virus infection through crosstalk between salicylic acid and auxin signaling pathways[J]. Physiologia Plantarum, 2023, 175(5):e14012.doi: 10.1111/ppl.14012.
|
| [15] |
D'Autréaux B, Toledano M B. ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10):813-824.doi: 10.1038/nrm2256
|
| [16] |
Mittler R, Zandalinas S I, Fichman Y, Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23(10):663-679.doi: 10.1038/s41580-022-00499-2
|
| [17] |
Yuan H M, Liu W C, Lu Y T. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses[J]. Cell Host & Microbe, 2017, 21(2):143-155.doi: 10.1016/j.chom.2017.01.007.
|
| [18] |
Wang W, Cheng Y Y, Chen D D, Liu D, Hu M J, Dong J, Zhang X P, Song L R, Shen F F. The catalase gene family in cotton:genome-wide characterization and bioinformatics analysis[J]. Cells, 2019, 8(2):86.doi: 10.3390/cells8020086.
|
| [19] |
Kabir M H, Wang M H. Functional studies on two catalase genes from tomato( Solanum lycopersicum L.)[J]. The Journal of Horticultural Science and Biotechnology, 2011, 86(1):84-90.doi: 10.1080/14620316.2011.11512730.
|
| [20] |
Wang J L, Dai Y J, Li X D, Zhu L Y, Liu S X, He Y L, Zhang J, Song F M, Li D Y. Tomato B-cell lymphoma2(Bcl2)-associated athanogene 5(SlBAG5)contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity[J]. International Journal of Biological Macromolecules, 2025, 301:140466.doi: 10.1016/j.ijbiomac.2025.140466.
|
| [21] |
Meena M, Zehra A, Dubey M K, Aamir M, Gupta V K, Upadhyay R S. Comparative evaluation of biochemical changes in tomato( Lycopersicon esculentum mill.)infected by Alternaria alternata and its toxic metabolites(TeA,AOH,and AME)[J]. Frontiers in Plant Science, 2016, 7:1408.doi: 10.3389/fpls.2016.01408.
|
| [22] |
Zhang Y, Song R F, Yuan H M, Li T T, Wang L F, Lu K K, Guo J X, Liu W C. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10[J]. Molecular Plant Pathology, 2021, 22(10):1226-1238.doi: 10.1111/mpp.13106.
|
| [23] |
Kużniak E, Skłodowska M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants[J]. Planta, 2005, 222(1):192-200.doi: 10.1007/s00425-005-1514-8.
|
| [24] |
Magbanua Z V, De Moraes C M, Brooks T D, Williams W P, Luthe D S.Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus?[J]. Molecular Plant-Microbe Interactions, 2007, 20(6):697-706.doi: 10.1094/mpmi-20-6-0697.
|
| [25] |
Liu Z H, Wang D, Tang H, Li H Z, Zhang X H, Dong S L, Zhang L, Yang L. Identification and analysis of the catalase gene family response to abiotic stress in Nicotiana tabacum L.[J]. Agronomy, 2023, 13(3):936.doi: 10.3390/agronomy13030936.
|
| [26] |
张键, 曹雄, 杨剑锋, 贾硕, 刘麟, 阿德拉·曼德拉-俄罗摩,冯伊彤,赵君.活性氧及抗病信号分子介导的向日葵抗黄萎病机制初探[J]. 华北农学报, 2022, 37(3):193-199.doi: 10.7668/hbnxb.20192593.
|
|
Zhang J, Cao X, Yang J F, Jia S, Liu L, Addrah Mandela-Elorm, Feng Y T, Zhao J. Prilminary study on the mechanism of resistance to sunflower Verticillium wilt mediated by reactive oxygen and signaling molecules[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3):193-199.
|