[1] 全瑞兰,王青林,马汉云,等. 干旱对水稻生长发育的影响及其抗旱研究进展[J]. 中国种业,2015(9):12-14.
[2] 刘小龙. 我国干旱地区水文地质研究现状[J]. 工程建设与设计,2017(11):123-124.
[3] 邓忠,翟国亮,吕谋超,等. 我国农业应对干旱灾害的技术研究现状及展望[J]. 节水灌溉,2016(8):162-165.
[4] 康蕾,张红旗. 我国五大粮食主产区农业干旱态势综合研究[J]. 中国生态农业学报,2014,22(8):928-937.
[5] 孙莹. 水资源现状及保护应对措施分析[J]. 科技资讯,2017(33):101-102.
[6] 黄阳. 浅谈我国农田水利的现状与对策[J]. 南方农业,2017,11(14):113-113.
[7] 蔡一霞,李洋,朱海涛,等. 灌浆期亏缺灌溉对水稻产量形成的影响[J]. 中国农业科学,2015,48(8):1492-1505.
[8] 朱海平,李贵勇,夏琼梅,等. 不同时期干旱胁迫对水稻产量和生长特性的影响[J]. 中国稻米,2017,23(4):135-138.
[9] 陈亮,汪本福,江元元,等. 孕穗期干旱及复水对水稻叶片生理生化和产量的影响[J]. 中国稻米,2016,22(1):59-64.
[10] 段素梅,杨安中,黄义德,等. 干旱胁迫对水稻生长、生理特性和产量的影响[J]. 核农学报,2014,28(6):1124-1132.
[11] 郭贵华,刘海艳,李刚华,等. ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J]. 中国农业科学,2014,47(22):4380-4391.
[12] Xiang L,Hu L,Xu W,et al. Exogenous γ-Aminobutyric acid improves the structure and function of photosystem Ⅱ in muskmelon seedlings exposed to Salinity-Alkalinity stress[J]. PLoS One,2016,11(10):e0164847.
[13] 杨泽伟,王龙海,朱莉,等.γ-氨基丁酸代谢旁路在植物响应逆境胁迫中的作用机制研究[J]. 生物技术进展,2014,4(2):77-84.
[14] Wendy L Allan, Barry J Shelp. Fluctuations of γ-aminobutyrate, γ-hydroxybutyrate, and related amino acids in leaves as a function of the light-dark cycle, leaf age, and N stress[J].Canadian Journal of Botany, 2006, 84(8):1339-1346.
[15] 王宣东,郭尚敬,李妹芳,等.γ-氨基丁酸对小麦耐盐性的影响(英文)[J]. 南方农业学报,2017,48(10):1761-1768.
[16] 王春燕,郭玉佳,张晓倩,等. 不同浓度NaCl胁迫下γ-氨基丁酸对黄瓜幼苗生长及矿质元素吸收的影响[J]. 北方园艺,2014(3):5-8.
[17] 王春燕,李敬蕊,夏庆平,等. 外源γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗根系GABA代谢及氨基酸含量的影响[J]. 应用生态学报,2014,25(7):2011-2018.
[18] Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems[J]. Journal of Experimental Botany,2002,53(370):773-787.
[19] Lam H M,Coschigano K T,Oliveira I C,et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47(4):569-593.
[20] Rocha M,Licausi F,Araújo W L,et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus[J]. Plant Physiology,2010,152(3):1501-1513.
[21] Berger S,Sinha A K,Roitsch T. Plant physiology meets phytopathology:plant primary metabolism and plant-pathogen interactions[J]. Journal of Experimental Botany,2007,58(15/16):4019-4026.
[22] Heil M,Bostock R M. Induced systemic resistance(ISR)against pathogens in the context of induced plant defences[J]. Annals of Botany,2002,89(5):503-512.
[23] Bolton M D. Primary metabolism and plant defense-fuel for the fire[J]. Molecular Plant-microbe Interactions,2009,22(5):487-497.
[24] Kinnersley A M,Turano F J. Gamma aminobutyric acid(GABA)and plant responses to stress[J]. Critical Reviews in Plant Sciences,2000,19(6):479-509.
[25] 王小纯,熊淑萍,马新明,等. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J]. 生态学报,2005,25(4):802-807.
[26] 马冬云,郭天财,查菲娜,等. 种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响[J]. 作物学报,2007,33(3):514-517.
[27] Zhang C, Peng S, Peng X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots[J]. Plant Science, 1997, 125(2):163-170.
[28] 吴良欢,蒋式洪,陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J]. 土壤通报,1998,29(3):136-138.
[29] Saito T,Matsukura C,Sugiyama M,et al. Screening for gamma-aminobutyric acid(GABA)-rich tomato varieties[J]. Journal of the Japanese Society for Horticultural Science,2008,77(3):242-250.
[30] 雷舜,王抄抄,黄炎,等. 分蘖期控制灌溉对土温及水稻干物质积累等的影响[J]. 华北农学报,2016,31(2):153-158.
[31] 赵宏伟,田雪飞,于美芳,等. 孕穗期干旱胁迫对寒地粳稻干物质积累、转运及产量形成影响[J]. 东北农业大学学报,2016,47(11):1-8.
[32] 高阳,杨婷婷,鲍广稳,等. 孕穗期干旱胁迫对水稻部分性状及产量的影响[J]. 安徽科技学院学报,2015(1):19-22.
[33] 杨安中,段素梅,吴文革,等. 孕穗期干旱胁迫对超级稻剑叶部分生理指标及产量的影响[J]. 分子植物育种,2017,15(2):685-691.
[34] 郑舒文,徐其隆,邹华文.γ-氨基丁酸对渍水胁迫下小麦产量的影响[J]. 湖北农业科学,2016,55(1):31-33.
[35] 沙汉景,胡文成,贾琰,等. 外源水杨酸,脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报,2017,43(11):1677-1688.
[36] 贾琰,赵宏伟,王敬国,等. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展[J]. 作物杂志,2014(5):9-15.
[37] 石英,沈其荣,茆泽圣,等. 旱作条件下水稻的生物效应及表层覆盖的影响[J]. 植物营养与肥料学报,2001,7(3):271-277.
[38] Liu C,Li Z,Yu G. The dominant glutamic acid metabolic flux to produce γ-Amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity[J]. Journal of Integrative Plant Biology,2011,53(8):608-618.
[39] Fait A,Fromm H,Walter D,et al. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends in Plant Science,2008,13(1):14.
[40] Miyashita Y,Good A G. Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana[J]. Plant & Cell Physiology,2008,49(1):92-102.
[41] 冯万军,邢国芳,牛旭龙,等. 植物谷氨酰胺合成酶研究进展及其应用前景[J]. 生物工程学报,2015,31(9):1301-1312.
[42] 曹珍珍,张其芳,韦克苏,等. 水稻籽粒氮代谢几个关键酶对花后高温胁迫的响应及其与贮藏蛋白积累关系[J]. 作物学报,2012,38(1):99-106.
[43] Miflin B J,Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Journal of Experimental Botany,2002,53:979-987.
[44] Masclaux-Daubresse C,Carrayol E,Valadier M H. The two nitrogen mobilisation-and senescence-associated GS1 and GDH genes are controlled by C and N metabolites[J]. Planta,2005,221(4):580-588.
[45] Perez M,Invers O,Manuel Ruiz J,et al. Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments:An experimental assessment[J]. Journal of Experimental Marine Biology and Ecology,2007,344(2):149-160.
[46] 甄爱,胡晓辉,任文奇,等. 外源γ-氨基丁酸对Ca(NO3)2胁迫下甜瓜幼苗NO3-N同化的影响[J]. 应用生态学报,2016,27(12):3987-3995. |