[1] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell, 1997, 9(6):841-857. doi:10.1105/tpc.9.6.841. [2] Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2):159-170. doi:10.1016/S0092-8674(00) 81093-4. [3] Liu C, Wang B M, Li Z X, Peng Z H, Zhang J R. TsNAC1 is a key transcription factor in abiotic stress resistance and growth[J]. Plant Physiology, 2018, 176(1):742-756. doi:10.1104/pp.17.01089. [4] Jin C, Li K Q, Xu X Y, Zhang H P, Chen H X, Chen Y H, Hao J, Wang Y, Huang X S, Zhang S L. A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes[J]. Frontiers in Plant Science, 2017, 8:1049. doi:10.3389/fpls.2017.01049. [5] Shim J S, Oh N, Chung P J, Kim Y S, Choi Y D, Kim J K. Overexpression of OsNAC14 improves drought tolerance in rice[J]. Frontiers in Plant Science, 2018, 9:310. doi:10.3389/fpls.2018.00310. [6] Hussain R M, Ali M, Feng X, Li X. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars[J]. BMC Plant Biology, 2017, 17(1):55. doi:10.1186/s12870-017-1001-y. [7] So H A, Lee J H. NAC transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress[J]. Journal of Plant Biology, 2019, 62(2):147-160. doi:10.1007/s12374-018-0285-2. [8] Meng X Q, Li G, Yu J, Cai J, Dong T T, Sun J, Xu T, Li Z Y, Pan S Y, Ma D F, Zhu M K. Isolation, expression analysis, and function evaluation of 12 novel stress-responsive genes of NAC transcription factors in sweetpotato[J]. Crop Science, 2018, 58(3):1328-1341. doi:10.2135/cropsci2017.12.0738. [9] Hoang X L T, Nhi D N H, Thu N B A, Thao N P, Tran L P. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6):483-497. doi:10.2174/1389202918666170227150057. [10] Liu W P, Zhao B G, Chao Q, Wang B C, Zhang Q, Zhang C X, Li S F, Jin F X, Yang D G, Li X H. Function analysis of ZmNAC33, a positive regulator in drought stress response in Arabidopsis[J]. Plant Physiology and Biochemistry, 2019, 145:174-183. doi:10.1016/j.plaphy.2019.10.038. [11] Li M, Hu Z, Jiang Q Y, Sun X J, Guo Y, Qi J C, Zhang H. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean[J]. Journal of Integrative Agriculture, 2018, 17(3):530-538. doi:10.1016/S2095-3119(17) 61721-0. [12] Zhang H H, Cui X Y, Guo Y X, Luo C B, Zhang L Y. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology, 2018, 98(6):471-493. doi:10.1007/s11103-018-0792-z. [13] Ma N N, Zuo Y Q, Liang X Q, Yin B, Wang G D, Meng Q W. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum, 2013, 149(4):474-486. doi:10.1111/ppl.12049. [14] Yang X F, Kim M Y, Ha J, Lee S H. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 2019, 10:1036. doi:10.3389/fpls.2019.01036. [15] Fan Z Q, Tan X L, Shan W, Kuang J F, Lu W J, Lin H T, Su X G, Lakshmanan P, Zhao M L, Chen J Y. Involvement of BrNAC041 in ABA-GA antagonism in the leaf senescence of Chinese flowering cabbage[J]. Postharvest Biology and Technology, 2020, 168:111254. doi:10.1016/j.postharvbio.2020.111254. [16] Zhang H F, Ma F, Wang X K, Liu S Y, Saeed U H, Hou X M, Zhang Y M, Luo D, Meng Y C, Zhang W, Abid K, Chen R G. Molecular and functional characterization of CaNAC035, an NAC transcription factor from pepper (Capsicum annuum L.)[J]. Frontiers in Plant Science, 2020, 11:14. doi:10.3389/fpls.2020.00014. [17] 徐红云. 拟南芥trihelix转录因子AST1调控植物抗旱、耐盐的机制研究[D].哈尔滨:东北林业大学, 2017. Xu H Y. The mechanism of Arabidopsis trihelix transcription factor AST1 in drought or salt stress response regulation[D].Harbin:Northeast Forestry University, 2017. [18] 王臻昱,才华, 柏锡,纪巍,李勇,魏正巍,朱延明.野生大豆GsGST19 基因的克隆及其转基因苜蓿的耐盐碱性分析[J].作物学报, 2012, 38(6):971-979. doi:10.3724/SP.J.1006.2012.00971. Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M. Isolation of GsGST19 from Glycine soja and analysis of saline-alkaline tolerance for transgenic Medicago sativa[J]. Acta Agronomica Sinica, 2012, 38(6):971-979. [19] 郭运娜. MdNAC29 基因在苹果干旱和盐胁迫中的作用和机制[D].沈阳:沈阳农业大学, 2018. Guo Y N. Effect and mechanism of MdNAC29 in apple to salt and drought stress[D].Shenyang:Shenyang Agricultural University, 2018. [20] Cui M H, Yoo K S, Hyoung S, Nguyen H T K, Kim Y Y, Kim H J, Ok S H, Yoo S D, Shin J S. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance[J]. FEBS Letters, 2013, 587(12):1773-1778. doi:10.1016/j.febslet.2013.04.028. [21] Li H, Gao Y, Xu H, Dai Y, Deng D Q, Chen J M. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis[J]. Plant Growth Regulation, 2013, 70(3):207-216. doi:10.1007/s10725-013-9792-9. [22] 李琳, 于崧, 蒋永超, 张婷婷, 邹春雷, 金珊珊, 郭建华, 梁海芸, 段君君, 于立河. 芸豆苗期耐盐碱性鉴定及品种筛选研究[J].植物生理学报, 2016, 52(1):62-72. doi:10.13592/j.cnki.ppj.2015.0620. Li L, Yu S, Jiang Y C, Zhang T T, Zou C L, Jin S S, Guo J H, Liang H Y, Duan J J, Yu L H. Identification and screening of different kidney bean cultivars for saline-alkaline tolerance during seedling stage[J]. Plant Physiology Journal, 2016, 52(1):62-72. [23] 张晓艳, 王坤, 王述民. 普通菜豆种质资源遗传多样性研究进展[J].植物遗传资源学报, 2007, 8(3):359-365. doi:10.13430/j.cnki.jpgr.2007.03.026. Zhang X Y, Wang K, Wang S M. Advances in genetic diversity research on germplasm resources of common bean (Phaseolus vulgaris L.)[J]. Journal of Plant Genetic Resources, 2007, 8(3):359-365. [24] Talaat N B. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean(Phaseolus vulgaris L.) plants grown in salty soils[J]. Plant Physiology and Biochemistry, 2014, 80:136-143. doi:10.1016/j.plaphy.2014.03.035. [25] 高国丽. 普通菜豆PvGF14a/g 基因在盐胁迫下的功能分析[D].长春:吉林大学, 2018. Gao G L. Functional analysis of common bean gene PvGF14a/g under salt stress[D].Changchun:Jilin University, 2018. [26] Zhang L N, Zhang L C, Xia C, Zhao G Y, Jia J Z, Kong X Y. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants[J]. Frontiers in Plant Science, 2015, 6:1174. doi:10.3389/fpls.2015.01174. [27] 张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能[J].植物生理学报, 2019, 55(7):915-924. doi:10.13592/j.cnki.ppj.2019.0107. Zhang H Z, Bai X Q, Zeng Y L. Biological functions of plant NAC transcription factors[J]. Plant Physiology Journal, 2019, 55(7):915-924. [28] Kim S Y, Kim S G, Kim Y S, Seo P J, Bae M, Yoon H K, Park C M. Exploring membrane-associated NAC transcription factors in Arabidopsis:Implications for membrane biology in genome regulation[J]. Nucleic Acids Research, 2007, 35(1):203-213. doi:10.1093/nar/gkl1068. [29] Kato H, Motomura T, Komeda Y, Saito T, Kato A. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2010, 167(7):571-577. doi:10.1016/j.jplph.2009.11.004. [30] Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis[J]. Molecular Plant Microbe Interactions, 2012, 25(5):684-696. doi:10.1094/MPMI-09-11-0244. [31] Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell, 2007, 19(1):270-280. doi:10.1105/tpc.106.047043. [32] Zhao Q, Gallego-Giraldo L, Wang H Z, Zeng Y N, Ding S Y, Chen F, Dixon R A. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula[J]. The Plant Journal, 2010, 63(1):100-114. doi:10.1111/j.1365-313X.2010.04223.x. [33] Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. PNAS,2006,103(35):12987-12992.doi:10.1073/pnas.0604882103. [34] Xu Z Y, Gongbuzhaxi, Wang C Y, Xue F, Zhang H, Ji W Q. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiology and Biochemistry, 2015, 96:356-363. doi:10.1016/j.plaphy.2015.08.013. [35] Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology, 2008, 67(1/2):169-181. doi:10.1007/s11103-008-9309-5. [36] Wei S W, Gao L W, Zhang Y D, Zhang F R, Yang X, Huang D F. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports, 2016, 35(9):1827-1839. doi:10.1007/s00299-016-1997-8. [37] Chai C L, Wang Y Q, Joshi T, Valliyodan B, Prince S, Michel L, Xu D, Nguyen H T. Soybean transcription factor ORFeome associated with drought resistance:A valuable resource to accelerate research on abiotic stress resistance[J]. BMC Genomics, 2015, 16:596. doi:10.1186/s12864-015-1743-6. [38] Wu J, Wang L F, Wang S M. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean[J]. BMC Plant Biology, 2016, 16(1):193. doi:10.1186/s12870-016-0882-5. [39] 晁毛妮, 胡喜贵, 张晋玉, 王润豪, 温青玉, 孙新凯, 黄中文. 大豆二酰甘油酰基转移酶基因GmDGAT1A 启动子的克隆与功能分析[J].华北农学报, 2020, 35(4):27-34.doi:10.7668/hbnxb.20190821. Chao M N, Hu X G, Zhang J Y, Wang R H, Wen Q Y, Sun X K, Huang Z W. Cloning and functional analysis of promoter of diacylglycerol acyltransferase gene GmDGAT1A in soybean[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4):27-34. [40] 冯珊珊, 徐永清, 赵梓颐, 李凤兰, 胡宝忠. 寒地冬小麦膨胀素基因TaEXPB12 同源基因的克隆及功能分析[J].华北农学报, 2020, 35(6):74-80.doi:10.7668/hbnxb.20191210. Feng S S, Xu Y Q, Zhao Z Y, Li F L, Hu B Z. Cloning and function verification of TaEXPB12 homologous genes in frigid region winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):74-80. [41] Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response[J]. The Plant Cell, 2011, 23(3):1153-1170. doi:10.1105/tpc.110.081794. |