[1] Jiang H, Guo L B, Qian Q. Recent progress on rice genetics in China[J]. Journal of Integrative Plant Biology, 2007, 49(6):776-790. doi:10.1111/j.1744-7909.2007.00492.x. [2] Plackett A R G, Powers S J,Fernandez-Garcia N, Urbanova T, Takebayashi Y, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips A L, Wilson Z A, Thomas S G, Hedden P. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1,-2, and-3 are the dominant paralogs[J]. The Plant Cell,2012,24(3):941-960. doi:10.1105/tpc.111.095109. [3] Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize[J]. Plant Journal, 2013, 73(3):405-416. doi:10.1111/tpj.12038. [4] Yang C J, Zhang C, Lu Y N, Jin J Q, Wang X L. The mechanisms of brassinosteroids' action:From signal transduction to plant development[J]. Molecular Plant, 2011, 4(4):588-600. doi:10.1093/mp/ssr020. [5] Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant & cell physiology,2005,46(1):79-86. doi:10.1093/pcp/pci022. [6] Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka Makoto, Sazuka T. Analysis of the rice mutant dwarf and gladius leaf 1. aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J].Plant Physiology, 2005,138(4):1982-1993. doi:10.1104/pp.105.062968. [7] Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses[J]. Journal of Experimental Botany, 2011, 62(9):3031-3037. doi:10.1093/jxb/err096. [8] Lata C, Gupta S, Prasad M. Foxtail millet:A model crop for genetic and genomic studies in bioenergy grasses[J]. Critical Reviews in Biotechnology, 2012, 33(3):328-343. doi:10.3109/07388551.2012.716809. [9] 贾小平,董普辉,张红晓,全建章,董志平. 谷子抗倒伏性和株高、穗部性状的相关性研究[J]. 植物遗传资源学报,2015,16(6):1188-1193. doi:10.13430/j.cnki.jpg2.2015.06.008 Jia X P, Dong P H, Zhang H X, Quan J Z, Dong Z P. Correlation study of lodging resistance and plant height, panicle traits in foxtail millet[J]. Journal of Plant Genetic Resources,2015,16(6):1188-1193. [10] 王晓宇,刁现民,王节之,王春芳,王根全,郝晓芬,梁增浩,王雪梅,赵芳芳. 谷子SSR分子图谱构建及主要农艺性状QTL定位[J]. 植物遗传资源学报,2013,14(5):871-878.doi:10.134301/j.cnki.jpgr.2013.05.016. Wng X Y, Diao X M, Wang J Z, Wang C F, Wang G Q, Hao X F, Liang Z H, Wang X M, Zhao F F. Construction of genetic map and QTL analysis of some main agronomic traits in millet[J]. Journal of Plant Genetic Resources,2013,14(5):871-878. [11] 赵美丞. 谷子半显性矮秆基因SiDw1 的图位克隆及形成机制分析[D]. 北京:中国农业科学院,2013. Zao M C. Map cloning and formation mechanism of semi-dominant dwarf gene SiDw1 in millet[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. [12] Wang J, Wang Z L, Du X F, Yang H Q, Han F, Han Y H, Yuan F, Zhang L Y, Peng S Z, Guo E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet (Setaria italica (L.) P. Beauv.)Using RAD-seq[J]. PLoS One, 2017, 12(6):e0179717. doi:10.1371/journal.pone.0179717. [13] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing[J]. G3, 2017, 7(5):1587-1594.doi:10.1534/g3.117.041517. [14] 陈广凤,陈建省,田纪春. 小麦株高相关性状与SNP标记全基因组关联分析[J]. 作物学报,2015,41(10):1500-1509. doi:10.3724/SP.J.1006.2015.01500. Cen G F, Chen J S, Tian J C. Genome-wide association analysis between SNP markers and plant height related traits in wheat[J].Acta Agronomica Sinica,2015,41(10):1500-1509. [15] 黄静,程明星,唐敏强,张凤启,张园园,童超波,刘越英,程晓晖,董彩华,黄军艳,刘胜毅. 甘蓝型油菜RIL群体株高性状的全基因组关联分析[J]. 中国油料作物学报, 2016, 38(5):543-548. doi:10. 7505/j. issn. 1007-9084. 2016. 05. 001. Hang J, Cheng M X, Tang M Q, Zhang F Q, Zhang Y Y, Tong C B, Liu Y Y, Cheng X H, Huang J Y, Liu S Y, Dong C H. Genome-wide association study of plant height in rapeseed RIL population[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(5):543-548. [16] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春,陈建省. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报,2017,43(4):483-495. doi:10.3724/SP.J.1006.2017.00483. Lu K, Deng Z Y, Zhang Y, Wang F F, Liu T T, Li Q F, Shao W, Zhao B, Tian J C, Chen J S. Linkage analysis and genome-wide association study of QTLs controlling stem-breaking-strength-related traits in wheat[J]. Acta Agronomica Sinica,2017,43(4):483-495. [17] 高宝祯,刘博,李石开,梁建丽,程锋,王晓武,武剑. 白菜类作物开花时间的全基因组关联分析[J]. 中国农业科学,2017,50(17):3375-3385. doi:10.3864/j.issn.0578-1752.2017.17.012. Go B Z, Liu B, Li S K, Liang J L, Cheng F, Wang X W, Wu J. Genome-wide association studies for flowering time in Brassica rapa[J]. Scientia Agricultura Sinica, 2017, 50(17):3375-3385. [18] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology,2012,30(6):555-561. doi:10.1038/nbt.2196. [19] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Gao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet(Setaria italica)provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology,2012,30(6):549-554. doi:10.1038/nbt.2195. [20] Gupta S,Kumari K, Muthamilarasan M, Parida S K, Prasad M. Population structure and association mapping of yield contributing agronomic traits in foxtail millet[J]. Plant Cell Reports,2014,33(6):881-893. doi:10.1007/s00299-014-1564-0. [21] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet(Setaria italica)[J]. Nature Genetics, 2013,45(8):957-961. doi:10.1038/ng.2673. [22] 林泽川,曹立勇. 水稻株型相关基因的定位与克隆研究进展[J]. 中国稻米,2014,20(1):17-22,27.doi:10.3969/j.issn.1006-8082.2014.01.004. Ln Z C, Cao L Y. Progress on mapping and cloning of genes related to rice plant type[J]. China Rice,2014,20(1):17-22,27. [23] Li Y H, Shen Y, Cai C, Zhong C C, Zhu L, Yuan M, Ren H Y. The type Ⅱ Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division[J]. The Plant Cell, 2010,22(8):2710-2726. doi:10.4161/psb.6.5.14979. [24] Vidali L, van Gisbergen P A C, Guérin C, Franco P, Li M, Burkart G M, Augustine R C, Blanchoin L, Bezanilla M. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32):13341-13346. doi:10.1073/pnas.0901170106. [25] Zhang Z, Zhang Y, Tan H X, Wang Y, Li G, Liang W Q, Yuan Z, Hu J P, Ren H Y, Zhang D B. Rice morphlogy determinant encodes the type Ⅱ formin FH5 and regulates rice morphogenesis[J]. Plant Cell, 2011, 23(2):681-700. doi:10.1105/tpc.110.081349. |