[1] 喻树迅,范术丽,王寒涛,魏恒玲,庞朝友. 中国棉花高产育种研究进展[J]. 中国农业科学,2016, 49(18):3465-3476. doi:10.3864/j.issn.0578-1752.2016.18.001. Yu S X, Fan S L, Wang H T, Wei H L, Pang C Y. Progresses in research on cotton high yield breeding in China[J]. Scientia Agricultura Sinica,2016, 49(18):3465-3476. [2] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, et al. Toward sequencing cotton (Gossypium) genomes[J]. Plant Physiology,2007, 145(4):1303-1310. doi:10.1104/pp.107.107672. [3] Sun Z W, Wang X F, Liu Z W, Gu Q S, Zhang Y, Li Z K, et al. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton[J]. Theoretical and Applied Genetics,2018, 131(11):2413-2425. doi:10.1007/s00122-018-3162-y. [4] Zhang Z, Li J W, Jamshed M, Shi Y Z, Liu A Y, Gong J W, et al. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population[J]. Plant Biotechnology Journal, 2020, 18(1):239-253. doi:10.1111/pbi.13191. [5] Shen X L, Zhang T Z, Guo W Z, Zhu X F, Zhang X Y. Mapping fiber and yield QTLs with main, epistatic, and QTL×environment interaction effects in recombinant inbred lines of upland cotton[J]. Crop Science,2006, 46(1):61-66. doi:10.2135/cropsci2005.0056. [6] Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007, 155(3):371-380. doi:10.1007/s10681-006-9338-6. [7] Wang X Q, Yu Y, Sang J, Wu Q Z, Zhang X L, Lin Z X. Intraspecific linkage map construction and QTL mapping of yield and fiber quality of Gossypium babardense[J]. Australian Journal of Crop Science,2013, 7(9):1252-1261. [8] Yu J W, Zhang K, Li S Y, Yu S X, Zhai H H, et al. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population[J]. Theoretical and Applied Genetics,2013, 126(1):275-287. doi:10.1007/s00122-012-1980-x. [9] Ning Z Y, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema[J]. Euphytica,2014, 195(1):143-156. doi:10.1007/s10681-013-0990-3. [10] Liu X Y, Teng Z H, Wang J X, Wu T T, Zhang Z Q, et al. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in upland cotton (Gossypium hirsutum L.)[J]. Molecular Genetics and Genomics,2017, 292(6):1281-1306. doi:10.1007/s00438-017-1347-8. [11] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology,2015, 33(5):531-537. doi:10.1038/nbt.3207. [12] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology,2015, 33(5):524-530. doi:10.1038/nbt.3208. [13] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J]. Nature Genetics,2019, 51(2):224-229. doi:10.1038/s41588-018-0282-x. [14] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genetics,2019, 51(4):739-748. doi:10.1038/s41588-019-0371-5. [15] Zhang Z, Shang H H, Shi Y Z, Huang L, Li J W, Ge Q, et al. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum)[J]. BMC Plant Biology,2016, 16(1):79. doi:10.1186/s12870-016-0741-4. [16] Su J J, Fan S L, Li L B, Wei H L, Wang C X, Wang H T, et al. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton[J]. Frontiers in Plant Science,2016, 7:1576. doi:10.3389/fpls.2016.01576. [17] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield[J]. Nature Genetics,2018, 50(6):803-813. doi:10.1038/s41588-018-0119-7. [18] Song C X, Li W, Pei X Y, Liu Y G, Ren Z Y, He K L, Zhang F, Sun K, Zhou X J, Ma X F, Yang D G. Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton[J]. Theoretical and Applied Genetics,2019, 132(7):1991-2002. doi:10.1007/s00122-019-03333-0. [19] 沈金龙,李妙,王国印,赵红霞,朱继杰,王士杰,和剑涵. 棉花新品种冀丰914在苏北地区的种植表现[J]. 中国棉花, 2017, 44(12):37-38. doi:10.11963/1000-632X.sjqlm.20171219. Shen J L, Li M, Wang G Y, Zhao H X, Zhu J J, Wang S J, He J H. Planting performance of new cotton cultivar Jifeng914 in Northern Jiangsu province[J]. China Cotton, 2017, 44(12):37-38. [20] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter,1993, 11(2):122-127. doi:10.1007/BF02670470. [21] Zhang Z, Wei T J, Zhong Y, Li X G, Huang J. Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology[J]. Tree Genetics & Genomes,2016,12(4):76. doi:10.1007/s11295-016-1032-9. [22] Zhou Z Q, Zhang C S, Zhou Y, Hao Z F, Wang Z H, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines[J]. BMC Genomics,2016,17(1):178. doi:10.1186/s12864-016-2555-z. [23] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. doi:10.1093/bioinformatics/btp324. [24] McKenna A, Hanna M, Banks E,Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit:A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,2010, 20(9):1297-1303. doi:10.1101/gr.107524.110. [25] Wu Y H, Bhat P R, Close T J, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph[J]. PLoS Genetics,2008, 4(10):1-11. doi:10.1371/journal.pgen.1000212. [26] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping[J]. Genetics,2007, 175(1):361-374. doi:10.1534/genetics.106.066811. [27] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping:integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. Crop Journal,2015, 3(3):269-283. doi:10.1016/j.cj.2015.01.001. [28] Xie C, Mao X Z, Huang J J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research,2011, 39(S2):316-322. doi:10.1093/nar/gkr483. [29] 孔繁玲,姜保功,张群远,杨付新,李如忠,刘永平,赵素兰,郭腾龙. 建国以来我国黄淮棉区棉花品种的遗传改良[J]. 作物学报,2000, 26(2):148-156. Kong F L, Jiang B G, Zhang Q Y, Yang F X, Li R Z, Liu Y P, Zhao S L, Guo T L. Genetic improvements of cotton varieties in Huang-huai region in China since 1950s[J]. Acta Agronomica Sinica,2000, 26(2):148-156. [30] Han Z G, Hu Y, Tian Q, Cao Y W, Si A J, Si Z F, et al. Genomic signatures and candidate genes of lint yield and fibre quality improvement in upland cotton in Xinjiang[J]. Plant Biotechnology Journal,2020, 18(10):2002-2014. doi:10.1111/pbi.13356. [31] Xie Q, Mayes S, Sparkes D L. Carpel size, grain filling, and morphology determine individual grain weight in wheat[J]. Journal of Experimental Botany,2015, 66(21):6715-6730. doi:10.1093/jxb/erv378. [32] Zikhali M, Wingen L U, Griffiths S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)[J]. Journal of Experimental Botany,2016, 67(1):287-299. doi:10.1093/jxb/erv458. [33] Pan Q C, Xu Y C, Li K, Peng Y, Zhan W, Li W Q, Li L, Yan J B. The genetic basis of plant architecture in 10 maize recombinant inbred line populations[J]. Plant Physiology, 2017, 175(2):858-873. doi:10.1104/pp.17.00709. [34] Zhu Q H, Spriggs A, Taylor J M, Llewellyn D, Wilson I. Transcriptome and complexity-reduced, DNA-based identification of intraspecies single-nucleotide polymorphisms in the polyploid Gossypium hirsutum L.[J]. G3-Genes, Genomes, Genetics,2014, 4(10):1893-1905. doi:10.1534/g3.114.012542. [35] Zhu Q H, Zhang J, Liu D X, Stiller W, Liu D J, Zhang Z S, Llewellyn D, Wilson I. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L.[J]. Journal of Experimental Botany,2016, 67(3):763-774. doi:10.1093/jxb/erv494. [36] Xu P, Gao J, Cao Z B, Chee P W, Guo Q, Xu Z Z, Paterson A H, Zhang X G, Shen X L. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton[J]. Theoretical and Applied Genetics,2017, 130(6):1309-1319. doi:10.1007/s00122-017-2890-8. [37] Chen W, Yao J B, Chu L, Yuan Z W, Li Y, Zhang Y S. Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing[J]. Theoretical and Applied Genetics,2015, 128(3):539-547. doi:10.1007/s00122-014-2452-2. [38] Chen W, Yao J B, Li Y, Zhao L J, Liu J, Guo Y, et al. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton[J]. Theoretical and Applied Genetics,2019, 132(1):97-112. doi:10.1007/s00122-018-3197-0. [39] Ma J J, Pei W F, Ma Q F, Geng Y H, Liu G Y, Liu J, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadense[J]. Theoretical and Applied Genetics,2019, 132(9):2663-2676. doi:10.1007/s00122-019-03380-7. [40] Feng L C, Zhou C H, Su Q, Xu M, Yue H R, Zhang S W, Zhou B L. Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutum[J]. Plant Science,2020,297:110524.doi:10.1016/j.plantsci.2020.110524. [41] Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103(1):230-235. doi:10.1073/pnas.0509875103. [42] Pan H Y, Zhou R, Louie G V, Mühlemann J K, Bomati E K, Bowman M E, Dudareva N, Dixon R A, Noel J P, Wang X Q. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis[J]. The Plant Cell, 2014, 26(9):3709-3727. doi:10.1105/tpc.114.127399. [43] Fang L, Xu X, Li J, Zheng F, Li M Z, Yan J W, et al. Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed[J]. BMC Genomics, 2020, 21(1):524. doi:10.1186/s12864-020-06931-1. [44] Baldoni A, Von Pinho E V R, Fernandes J S, Abreu V M, Carvalho M L M. Gene expression in the lignin biosynthesis pathway during soybean seed development[J]. Genetics and Molecular Research, 2013, 12(3):2618-2624. doi:10.4238/2013.February.28.2. |