[1] 高海峰,白微微,刘恩良,赵海燕,李广阔,张航,曾潮武.新疆春小麦品种(系)抗白粉病基因的分子检测[J].河南农业科学,2017,46(10):76-80. doi:10.15933/j.cnki.1004-3268.2017.10.014. Gao H F,Bai W W,Liu E L,Zhao H Y,Li G K,Zhang H,Zeng C W. Molecular detection of powdery mildew resistant genes of spring wheat varieties(lines) in Xinjiang[J]. Journal of Henan Agricultural Sciences,2017,46(10):76-80. [2] Zou J W, Qiu D, Sun Y L, Zheng C X, Li J T, Wu P P,Wu X F, Wang X M, Zhou Y, Li H J. Pm52: effectiveness of the gene conferring resistance to powdery mildew in wheat cultivar Liangxing 99[J]. Acta Agron Sin,2017,43(3):332-342. doi:10.3724/SP.J.1006.2017.00332. [3] 夏晴,麦艳娜,董振杰,刘文轩.小麦-野生亲缘种属添加系白粉病新抗源筛选及特异分子标记鉴定[J].河南农业科学,2018,47(6):64-69. doi:10.15933/j.cnki.1004-3268.2018.06.012. Xia Q,Mai Y N,Dong Z J,Liu W X. Identification of powdery mildew resistance resources from wheat-wild relative disomic addition lines and development of molecular markers of alien chromosome-specialty[J]. Journal of Henan Agricultural Sciences,2018,47(6):64-69. [4] 王掌军,刘妍,王志兰,乔丹,石冰欣,卢春甜,刘凤楼,李清峰,张晓岗,刘生祥.宁春4号与河东乌麦杂交F2产量相关性状和抗病性及其QTL分析[J].河南农业科学,2019,48(8):7-17. doi:10.15933/j.cnki.1004-3268.2019.08.002. Wang Z J,Liu Y,Wang Z L,Qiao D,Shi B X,Lu C T,Liu F L,Li Q F,Zhang X G,Liu S X. Analysis of yield-related traits,disease resistance and their QTLs of F2 hybrids from Ningchun No.4 and Hedong black wheat[J]. Journal of Henan Agricultural Sciences,2019,48(8):7-17. [5] Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T, An D G. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai[J]. Theor Appl Genet, 2015,128(10):2077-2084. doi:10.1007/s00122-015-2568-z. [6] Zou B H,Ding Y,Liu H,Hua J. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew[J]. Mol Plant Pathol,2018,19(6):1343-1352. doi:10.1111/mpp.12617. [7] Voinnet O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell,2009,136(4):669-687. doi:10.1016/j.cell.2009.01.046. [8] 安凤霞,梁艳,曲彦婷.MicroRNA在调节植物生长发育和逆境胁迫中的作用[J].植物生理学报,2013,49(4):317-323. doi:10.13592/j.cnki.ppj.2013.04.013. An F X,Liang Y,Qu Y T. Role of microRNA in regulating plant growth and development and stress responses[J]. Plant Physiology Journal,2013,49(4):317-323. [9] Chen L,Meng J M,Zhai J M,Xu P S,Luan Y S. MicroRNA396a-5p and-3p induce tomato disease susceptibility by suppressing target genes and up-regulation salicylic acid[J]. Plant Sci,2017,265(12):177-187. doi:10.1016/j.plantsci.2017.10.004. [10] Pradhan B,Naqvi A R,Saraf S,Mukherjee S K,Dey N. Prediction and characterization of tomato leaf curl new delhivirus (TOLCNDV) responsive novel microRNAs in Solanum lycopersicum[J]. Virus Res,2015,195(7):183-195. doi:10.1016/j.virusres.2014.09.001. [11] Zhu Q H,Fan L J,Liu Y,Xu H,Llewellyn D,Wilson L. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton[J]. PLoS One,2013,8(12):143-159. doi:10.1371/journal.pone.0084390. [12] Shivaprasad P V,Chen H M,Patel K,Bond D M,Santos B A C M,Baulcombe D C. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs[J]. The Plant Cell,2012,24(3):859-874. doi:10.1105/tpc.111.095380. [13] Wang X Y,Yu G C,Zhao J Y,Cui N,Yu Y,Fan H Y. Functional identification of Corynespora cassiicola -responsive miRNAs and their targets in cucumber[J]. Front Plant Sci,2019,10:668. doi:10.3389/fpls.2019.00668. [14] Shweta,Akhter Y,Khan J A. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus[J]. Gene,2018,638:60-65. doi:10.1016/j.gene.2017.09.061. [15] Li L H,Yi H L,Xue M Z,Yi M. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana[J]. Ecotoxicology,2017,26(9):1181-1187. doi:10.1007/s10646-017-1843-y. [16] Zhang Q L, Li Y, Zhang Y, Wu C B, Wang S N, Hao L, Wang S Y, Li T T. Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease[J]. Front Plant Sci,2017,8:526. doi:10.3389/fpls.2017.00526. [17] 张晓祥,王玲,寿路路. 改良CTAB方法快速提取小麦基因组DNA[J]. 农业科学与技术(英文版),2013, 14(7):946-949.doi:10.16175/j.cnki.1009-4229.2013.07.015. Zhang X X,Wang L,Shou L L. Modified CTAB method for extracting genomic DNA from wheat leaf[J]. Agr Sci Tech,2013,14(7):946-949. [18] Supartana P,Shimizu T,Nogawa M,Shioiri H,Nakajima T,Haramoto N,Nozue M,Kojima M. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens[J]. J Biosci Bioeng,2006,102(3):162-170. doi:10.1263/jbb.102.162. [19] Luan Y S,Cui J M,Zhai J M,Li J,Han L,Meng J. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans[J]. Planta,2015,241(6):1405-1416. doi:10.1007/s00425-015-2267-7. [20] Ai Q,Liang G,Zhang H M,Yu D Q. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana[J]. Plant Divers,2016,38(2):92-100. doi:10.1016/j.pld.2015.04.001. [21] Yuan N,Yuan S R,Li Z G,Li D Y,Hu Q,Luo H. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis[J]. Sci Rep,2016,6(1):28791. doi:10.1038/srep28791. |