[1] Schaller G E, Bishopp A, Kieber J J. The yin-yang of hormones:cytokinin and auxin interactions in plant development[J]. The Plant Cell, 2015, 27(1):44-63. doi:10.1105/tpc.114.133595. [2] Brandizzi F. Divide, expand, differentiate-new insights on plant organ growth through cytokinin signaling[J]. The Plant Journal, 2019, 97(5):803-804. doi:10.1111/tpj.14261. [3] Aki S S, Mikami T, Naramoto S, Nishihama R, Ishizaki K, Kojima M, Takebayashi Y, Sakakibara H, Kyozuka J, Kohchi T, Umeda M. Cytokinin signaling is essential for organ formation in Marchantia polymorpha[J]. Plant & Cell Physiology, 2019, 60(8):1842-1854. doi:10.1093/pcp/pcz100. [4] Kieber J J, Schaller G E. Cytokinin signaling in plant development[J]. Development, 2018, 145(4):149344. doi:10.1242/dev.149344. [5] Wang L, Chong K. The essential role of cytokinin signaling in root apical meristem formation during somatic embryogenesis[J]. Frontiers in Plant Science, 2016, 6:1196. doi:10.3389/fpls.2015.01196. [6] Wybouw B, De Rybel B. Cytokinin-A developing story[J]. Trends in Plant Sience, 2019, 24(2):177-185. doi:10.1016/j.tplants.2018.10.012. [7] Bielach A, Hrtyan M, Tognetti V B. Plants under stress:involvement of auxin and cytokinin[J]. International Journal of Molecular Sciences, 2017, 18(7):1427. doi:10.3390/ijms18071427. [8] Huang X Z, Hou L Y, Meng J J, You H W, Li Z, Gong Z Z, Yang S H, Shi Y T. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis[J]. Molecular Plant, 2018, 11(7):970-982. doi:10.1016/j.molp.2018.05.001. [9] Li W Q, Herrera-Estrella L, Tran L P. Do cytokinins and strigolactones crosstalk during drought adaptation?[J]. Trends in Plant Science, 2019, 24(8):669-672. doi:10.1016/j.tplants.2019.06.007. [10] Wang W C, Lin T C, Kieber J, Tsai Y C. Response regulator 9 and 10 negatively regulate salinity tolerance in rice[J]. Plant & Cell Physiology, 2019, 60(11):2549-2563.doi:10.1093/pcp/pcz149. [11] Cortleven A, Leuendorf J E, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants[J]. Plant, Cell & Environment, 2019, 42(3):998-1018. doi:10.1111/pce.13494. [12] Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the crossroads of abiotic stress signalling pathways[J]. International Journal of Molecular Sciences, 2018, 19(8):2450. doi:10.3390/ijms19082450. [13] Heyl A, Schmülling T. Cytokinin signal perception and transduction[J]. Current Opinion in Plant Biology, 2003, 6(5):480-488. doi:10.1016/S1369-5266(03)00087-6. [14] To J P C, Kieber J J. Cytokinin signaling:two-components and more[J]. Trends in Plant Science, 2008, 13(2):85-92. doi:10.1016/j.tplants.2007.11.005. [15] Zürcher E, Müller B. Cytokinin synthesis, signaling, and function-advances and new insights[J]. International Review of Cell and Molecular Biology, 2016, 324:1-38. doi:10.1016/bs.ircmb.2016.01.001. [16] Hutchison C E, Li J, Argueso C, Gonzalez M, Lee E, Lewis M W, Maxwell B B, Perdue T D, Schaller G E, Alonso J M, Ecker J R, Kieber J J. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling[J]. The Plant Cell, 2006, 18(11):3073-3087. doi:10.1105/tpc.106.045674. [17] Nishiyama R, Watanabe Y, Leyva-Gonzalez M A, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Phan Tran L S. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response[J]. Proceedings of the National Academy of Sciences, 2013, 110(12):4840-4845. doi:10.1073/pnas.1302265110. [18] Du L M, Jiao F C, Chu J, Jin G L, Chen M, Wu P. The two-component signal system in rice (Oryza sativa L.):a genome-wide study of cytokinin signal perception and transduction[J]. Genomics, 2007, 89(6):697-707. doi:10.1016/j.ygeno.2007.02.001. [19] Schaller G E, Doi K, Hwang I, Kieber J J, Khurana J P, Kurata N, Mizuno T, Pareek A, Shiu S H, Wu P, Yip W K. Nomenclature for two-component signaling elements of rice[J]. Plant Physiology, 2007, 143(2):555-557. doi:10.1104/pp.106.093666. [20] Tsai Y C, Weir N R, Hill K, Zhang W J, Kim H J, Shiu S H, Schaller G E, Kieber J J. Characterization of genes involved in cytokinin signaling and metabolism from rice[J]. Plant Physiology, 2012, 158(4):1666-1684. doi:10.1104/pp.111.192765. [21] Sun L J, Zhang Q, Wu J X, Zhang L Q, Jiao W W, Zhang S W, Zhang Z G, Sun D Y, Lu T G, Sun Y. Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice[J]. Plant Physiology, 2014, 165(1):335-345. doi:10.1104/pp.113.232629. [22] 苏文强, 胡鑫宇, 王秋霞, 欧长波, 郭爱疆, 李辉, 骆学农, 余燕, 张艳红, 姜金庆, 刘兴友, 马金友, 王松, 才学鹏. 猪囊尾蚴API基因原核表达条件的优化[J]. 西北农林科技大学学报(自然科学版), 2017, 45(8):1-6. doi:10.13207/j.cnki.jnwafu.2017.08.001. Su W Q, Hu X Y, Wang Q X, Ou C B, Guo A J, Li H, Luo X N, Yu Y, Zhang Y H, Jiang J Q, Liu X Y, Ma J Y, Wang S, Cai X P. Optimization of prokaryotic expression conditions for apoptosis protease inhibitor gene from Cysticercus cellulosae[J]. Journal of Northwest A & F University(Natural Science Edition), 2017, 45(8):1-6. [23] 毛明光, 温施慧, 姜志强, 蒋洁兰, 孙航, 吕绘倩, 李幸. 太平洋鳕神经坏死病毒衣壳蛋白(CP)的原核表达及条件优化[J]. 大连海洋大学学报, 2016, 31(2):117-123. doi:10.16535/j.cnki.dlhyxb.2016.02.001. Mao M G, Wen S H, Jiang Z Q, Jiang J L, Sun H, Lü H Q, Li X. Prokaryotic expression and condition optimization of Nervous necrosis virus capsid protein(CP) in pacific cod Gadus macrocephalus[J]. Journal of Dalian Ocean University, 2016, 31(2):117-123. [24] 周泽军, 庞欢瑛, 丁燏, 简纪常, 吴灶和. 溶藻弧菌HY9901转运蛋白TolB的原核表达及条件优化和纯化[J]. 中国农学通报, 2013, 29(11):55-59. doi:10.11924/j.issn.1000-6850.2012-3302. Zhou Z J, Pang H Y, Ding Y, Jian J C, Wu Z H. Purification and optimization of prokaryotic expression of translocation protein TolB gene from Vibrio alginolyticus strain HY9901[J]. Chinese Agricultural Science Bulletin, 2013, 29(11):55-59. [25] 郝英辰, 龙月, 郭豪, 李宁, 张松杰, 赵棋, 张松涛. 烟草 NtGCN2 的原核表达、纯化及多克隆抗体制备[J]. 农业生物技术学报, 2019, 27(1):170-179. doi:10.3969/j.issn.1674-7968.2019.01.018. Hao Y C, Long Y, Guo H, Li N, Zhang S J, Zhao Q, Zhang S T. Prokaryotic expression, purification and polyclonal antibody preparation of tobacco(Nicotiana tabacum) NtGCN2[J]. Journal of Agricultural Biotechnology, 2019, 27(1):170-179. [26] 蒋琛茜, 瓮巧云, 樊锦涛, 王冠宇, 董丽萍, 邢继红, 董金皋. 拟南芥抗病相关基因 T1N6_22 的原核表达分析[J]. 华北农学报, 2015, 30(1):73-76. doi:10.7668/hbnxb.2015.01.012. Jiang C X, Weng Q Y, Fan J T, Wang G Y, Dong L P, Xing J H, Dong J G. Prokaryotic expression analysis of resistance-related gene T1N6_22 from Arabidopsis thaliana[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(1):73-76. [27] Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system[J]. Asian Pacific Journal of Tropical Biomedicine, 2012, 2(2):159-162. doi:10.1016/S2221-1691(11)60213-X. [28] 杨雪, 武志海, 李艳丽, 杨美英. 二穗短柄草 BdGPX4 基因的克隆及酶学性质[J]. 中国农业大学学报, 2018, 23(10):8-17. doi:10.11841/j.issn.1007-4333.2018.10.02. Yang X, Wu Z H, Li Y L, Yang M Y. Cloning and characterization of glutathione peroxidase 4 from Brachypodium distachyon[J]. Journal of China Agricultural University, 2018, 23(10):8-17. [29] 刘超, 冯勇, 董笑笑, 张忠明, 朱辉. 百脉根泛素结合酶LjE2的表达及活性鉴定[J]. 华中农业大学学报, 2019, 38(1):22-27. doi:10.13300/j.cnki.hnlkxb.2019.01.004. Liu C, Feng Y, Dong X X, Zhang Z M, Zhu H. Expression and activity identification of ubiquitin-binding enzyme LjE2 of Lotus japonicus[J]. Journal of Huazhong Agricultural University, 2019, 38(1):22-27. [30] 陈伟杰, 付文强, 黄惜, 袁红梅. 橡胶树转录因子HbCBF2和HbCBF3的克隆和原核表达分析[J]. 分子植物育种, 2018, 16(13):4194-4201. doi:10.13271/j.mpb.016.004194. Chen W J, Fu W Q, Huang X, Yuan H M. Cloning and prokaryotic expression of transcription factor HbCBF2 and HbCBF3 in Hevea brasiliensis[J]. Molecular Plant Breeding, 2018, 16(13):4194-4201. |