| [1] |
|
|
Xia S Y, Niu Z M, Li Q Q, Zhang L J, Nan X R, Sheng W M. Research progress on genetic diversity of Phytophthora infestans in potato late blight and its control[J]. Heilongjiang Agricultural Sciences, 2022(12):89-94.
|
| [2] |
|
|
Ma L, Wang S H, Liu S M, Lang F Q, Ji F Q, Li L B, Hou L X. Analysis on identification and characterization of tomato and potato CIPK3 genes[J]. Tianjin Agricultural Sciences, 2017, 23(8):1-4.
|
| [3] |
|
|
Shu R, Liu S J, Yue L X, Jiao J, Li Y. Research on the transient expression of GUS gene by Agrobacterium tumefaciens in potato tubers[J]. Tianjin Agricultural Sciences, 2013, 19(11):1-3.
|
| [4] |
Carrington J C, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631):336-338.doi: 10.1126/science.1085242.
|
| [5] |
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D G. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439.doi: 10.1126/science.1126088.
|
| [6] |
Canto-Pastor A, Santos B A M C, Valli A A, Summers W, Schornack S, Baulcombe D C. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(7):2755-2760.doi: 10.1073/pnas.1814380116.
|
| [7] |
Jiang N, Cui J, Yang G L, He X L, Meng J, Luan Y S. Comparative transcriptome analysis shows the defense response networks regulated by miR482b[J]. Plant Cell Reports, 2019, 38(1):1-13.doi: 10.1007/s00299-018-2344-z.
|
| [8] |
Kumar A, Farooqi M S, Mishra D C, Kumar S, Rai A, Chaturvedi K K, Lal S B, Sharma A. Prediction of miRNA and identification of their relationship network related to late blight disease of potato[J]. MicroRNA, 2018, 7(1):11-19.doi: 10.2174/2211536607666171213123038.
|
| [9] |
Kapadia C, Datta R, Mahammad S M, Tomar R S, Kheni J K, Ercisli S. Genome-wide identification,quantification,and validation of differentially expressed miRNAs in eggplant( Solanum melongena L.) based on their response to Ralstonia solanacearum infection[J]. ACS Omega, 2023, 8(2):2648-2657.doi: 10.1021/acsomega.2c07097.
|
| [10] |
池明. 采用人造小RNA技术抑制马铃薯多酚氧化酶的研究[D]. 杨凌: 西北农林科技大学, 2014.
|
|
Chi M. Study on inhibition of potato polyphenol oxidase by artificial small RNA technology[D]. Yangling: Northwest A&F University, 2014.
|
| [11] |
Ni X M, Tian Z D, Liu J, Song B T, Li J C, Shi X L, Xie C H. StPUB17,a novel potato UND/PUB/ARM repeat type gene,is associated with late blight resistance and NaCl stress[J]. Plant Science, 2010, 178(2):158-169.doi: 10.1016/j.plantsci.2009.12.002.
|
| [12] |
Dai X B, Zhao P X. psRNATarget:a plant small RNA target analysis server[J]. Nucleic Acids Research, 2011, 39(S2):W155-W159.doi: 10.1093/nar/gkr319.
|
| [13] |
|
|
Wu B W. Biological functions and mechanisms of miR5048 and its target genes TaMAPK1 and TaNAK1.2 in wheat(Triticum aestivum)[D]. Yangling: Northwest A&F University, 2023.
|
| [14] |
Bonnet E, He Y, Billiau K, TAPIR,a web server for the prediction of plant microRNA targets,including target mimics[J]. Bioinformatics, 2010, 26(12):1566-1568.doi: 10.1093/bioinformatics/btq233.
|
| [15] |
|
|
Cao L F. Study on the function of Mh-miR827 and Mh-miR397b in response to pathogen infection of Malus hupehensis[D]. Nanjing: Nanjing Agricultural University, 2020.
|
| [16] |
Baker C C, Sieber P, Wellmer F, Meyerowitz E M. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis[J]. Current Biology, 2005, 15(4):303-315.doi: 10.1016/j.cub.2005.02.017.
|
| [17] |
|
|
Huang M, Song Z Y, Cai J Y, Nan H, Zhao J. Analysis on expression under abiotic stress and the promoter cis-acting elements of miR169 family in pepper(Capsicum annuum L.)[J]. Journal of West China Forestry Science, 2023, 52(1):165-174.
|
| [18] |
曹焜, 孙宇峰, 张晓艳, 赵越, 边境, 朱浩, 王盼, 韩承伟, 孙凯旋, 王晓楠. 工业大麻miR156基因家族在NaHCO 3胁迫下的表达模式及生物信息学分析[J]. 中国麻业科学, 2024, 46(1):10-15,46.doi: 10.3969/j.issn.1671-3532.2024.01.002.
|
|
Cao K, Sun Y F, Zhang X Y, Zhao Y, Bian J, Zhu H, Wang P, Han C W, Sun K X, Wang X N. Expression pattern and bioinformatics analysis of miR156 gene family of industrial hemp under NaHCO3 stress[J]. Plant Fiber Sciences in China, 2024, 46(1):10-15,46.
|
| [19] |
Mallory A C, Dugas D V, Bartel D P, Bartel B. microRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic,vegetative,and floral organs[J]. Current Biology, 2004, 14(12):1035-1046.doi: 10.1016/j.cub.2004.06.022.
|
| [20] |
Zhang B H, Pan X P, Wang Q L, Cobb G P, Anderson T A. Identification and characterization of new plant microRNAs using EST analysis[J]. Cell Research, 2005, 15(5):336-360.doi: 10.1038/sj.cr.7290302.
|
| [21] |
|
|
Liu B B, Meng G Z, Liu Z J, Jia J Y, Duan H J, Ma Y, Cai X Y. Bioinformatics analysis of alfalfa miR156 and its target genes[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(7):1385-1392.
|
| [22] |
Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants[J]. The Plant Cell, 2005, 17(6):1658-1673.doi: 10.1105/tpc.105.032185.
|
| [23] |
Rahmanian S, Murad R, Breschi A, Zeng W H, Mackiewicz M, Williams B, Davis C A, Roberts B, Meadows S, Moore D, Trout D, Zaleski C, Dobin A, Sei L H, Drenkow J, Scavelli A, Gingeras T R, Wold B J, Myers R M, Guig R, Mortazavi A. Dynamics of microRNA expression during mouse prenatal development[J]. Genome Research, 2019, 29(11):1900-1909.doi: 10.1101/gr.248997.119.
|
| [24] |
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, ROS signaling:the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309.doi: 10.1016/j.tplants.2011.03.007.
|
| [25] |
Yin Z Y, Liu J Z, Zhao H P, Chu X M, Liu H Q, Ding X Y, Lu C C, Wang X Y, Zhao X Y, Li Y, Ding X H. SlMYB1 regulates the accumulation of lycopene,fruit shape,and resistance to Botrytis cinerea in tomato[J]. Horticulture Research, 2023, 10(2):uhac282.doi: 10.1093/hr/uhac282.
|
| [26] |
Zou B H, Jia Z H, Tian S M, Wang X M, Gou Z H, Dong H S. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis[J]. Functional Plant Biology, 2013, 40(3):304-313.doi: 10.1071/fp12253.
|
| [27] |
Shi H J, Cui R Z, Hu B S, Wang X M, Zhang S P, Liu R X, Dong H S. Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis[J]. Physiological and Molecular Plant Pathology, 2011, 76(2):90-95.doi: 10.1016/j.pmpp.2011.06.008.
|
| [28] |
Li J, Luan Y S, Zhai J M, Liu P, Xia X Y. Bioinformatic analysis of functional characteristics of miR172 family in tomato[J]. Journal of Northeast Agricultural University(English Edition), 2013, 20(4):19-27.doi: 10.1016/S1006-8104(14)60042-8.
|
| [29] |
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in planta pathogen interactions[J]. Frontiers in Plant Science, 2014, 5:228.doi: 10.3389/fpls.2014.00228.
|