| [1] |  | 
																													
																							|  | Ma X M. Study on molecular mechanism of quality characteristics and regulation of beach mutton[D]. Lanzhou: Gansu Agricultural University, 2022. | 
																													
																							| [2] |  | 
																													
																							|  | Zhou Y, Liu W P, Chen X F. Research advances on nutritional regulation of Tan sheep mutton quality[J]. Animal Husbandry and Feed Science, 2021, 42(5):51-54. | 
																													
																							| [3] |  | 
																													
																							|  | Cao T, Shi L G, Xun W J, Zhou H L, Zhou X, Ji F J, Hou G Y. Main molecular factors influencing skeletal muscle development in pig and the research progress[J]. Acta Ecologae Animalis Domastici, 2022, 43(3):7-12. | 
																													
																							| [4] |  | 
																													
																							|  | Jiang J, Cai B Y, Sun S W, Hou F X, Sun S Y, Song X Z. Effects of gender on body size and slaughter performance of Panshi grey geese and their correlation[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(10):68-71. | 
																													
																							| [5] |  | 
																													
																							|  | Guo J F, Wang J Y, Lin H C, Shen Z Q, Dong S H, Zhou L. Effect of slaughter weight and sex on carcass performance and meat quality of Yimeng black pig[J]. Swine Production, 2022(4):45-47. | 
																													
																							| [6] |  | 
																													
																							|  | Liu J, He G Z, Xu L X, Yang Z C, Gong Y. Effect of sex on the meat performance of Guanling cattle[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2016, 40(2):1-4. | 
																													
																							| [7] | 孟珊, 杨阳, 李睿霄, 姬梦婷, 张娜, 路畅, 蔡春波, 高鹏飞, 郭晓红, 曹果清, 李步高. lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J]. 畜牧兽医学报 , 2022 , 53 (6):1712-1722.doi:10.11843/j.issn.0366-6964.2022.06.006 . | 
																													
																							|  | Meng S, Yang Y, Li R X, Ji M T, Zhang N, Lu C, Cai C B, Gao P F, Guo X H, Cao G Q, Li B G. Screening and functional study of lncRNA-6617 regulating porcine intramuscular preadipocytes differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6):1712-1722. | 
																													
																							| [8] | Li Z H, Cai B L , Ali Abdalla B , Zhu X N , Zheng M , Han P G , Nie Q H , Zhang X Q . LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway[J]. Journal of Cachexia,Sarcopenia and Muscle , 2019 , 10 (2):391-410.doi:10.1002/jcsm.12374 . | 
																													
																							| [9] | Yu X H, Zhang Y , Li T T , Ma Z , Jia H X , Chen Q , Zhao Y X , Zhai L L , Zhong R , Li C Y , Zou X T , Meng J , Chen A K , Puri P L , Chen M H , Zhu D H . Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD[J]. Nature Communications , 2017 , 8 :14016.doi:10.1038/ncomms14016 .  pmid: 28091529
 | 
																													
																							| [10] | Cesana M, Cacchiarelli D , Legnini I , Santini T , Sthandier O , Chinappi M , Tramontano A , Bozzoni I . A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell , 2011 , 147 (2):358-369.doi:10.1016/j.cell.2011.09.028 .  pmid: 22000014
 | 
																													
																							| [11] |  | 
																													
																							|  | Tan H Y, Liu Q, Hu D B, Zhang L L, Li X, Ding X B, Guo H, Guo Y W. Effects of interference lnc721 on proliferation and differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(9):3292-3300. | 
																													
																							| [12] |  | 
																													
																							|  | Lin Z K, Zhuang X N, Luo J Y, Chen T, Xi Q Y, Zhang Y L, Sun J J. Effects of non-coding RNAs on skeletal muscle development in pigs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(10):3595-3603. | 
																													
																							| [13] | 叶峻宁, 邓铭, 薛慧雯, 柳广斌, 邹娴, 孙宝丽, 郭勇庆, 刘德武, 李耀坤. 影响山羊胎儿肌肉发育mRNA和lncRNA的鉴定与分析[J]. 畜牧兽医学报 , 2023 , 54 (3):989-1002.doi:10.11843/j.issn.0366-6964.2023.03.013 . | 
																													
																							|  | Ye J N, Deng M, Xue H W, Liu G B, Zou X, Sun B L, Guo Y Q, Liu D W, Li Y K. Identification and analysis of mRNA and IncRNA affecting goat fetal muscle development[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):989-1002. | 
																													
																							| [14] | Zhu C Y, Zheng Q , Pan Q Q , Jing J , Qin S Q , Lou M Y , Yang Y H , Wei J B , Li S , Fang F G , Liu Y , Ling Y H . Analysis of lncRNA in the skeletal muscle of rabbits at different developmental stages[J]. Frontiers in Veterinary Science , 2022 , 9 :948929.doi:10.3389/fvets.2022.948929 .  URL
 | 
																													
																							| [15] | Ling Y H, Zheng Q , Sui M H , Zhu L , Xu L N , Zhang Y H , Liu Y , Fang F G , Chu M X , Ma Y H , Zhang X R . Comprehensive analysis of LncRNA reveals the temporal-specific module of goat skeletal muscle development[J]. International Journal of Molecular Sciences , 2019 , 20 (16):3950.doi:10.3390/ijms20163950 .  URL
 | 
																													
																							| [16] | 付洋洋. 年龄和性别对牦牛舍饲育肥效果和肉品质的影响研究[D]. 成都: 西南民族大学, 2018. | 
																													
																							|  | Fu Y Y. Effects of age and sex on fattening effect and meat quality of yak fed in house[D]. Chengdu: Southwest University for Nationalities, 2018. | 
																													
																							| [17] |  | 
																													
																							|  | Zhang H B, Liu S J, Jin Y, Jin Z M, Yuan Q, Wang G Y. Effect of gender on slaughtering performance and carcass quality of Bamei lambs[J]. Food Science, 2014, 35(19):82-85. | 
																													
																							| [18] | 向程举, 蒋会梅, 张依裕, 吴磊, 舒畅, 杨远清. 织金白鹅屠宰性能与肌肉品质的相关性分析[J]. 黑龙江畜牧兽医, 2020(19):63-65. | 
																													
																							|  | Xiang C J, Jiang H M, Zhang Y Y, Wu L, Shu C, Yang Y. Correlation analysis between slaughtering performance and muscle quality of Zhijin white goose[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(19):63-65. | 
																													
																							| [19] |  | 
																													
																							|  | Li N B. Determination of meat performance of Lubo goat lamb and analysis of its influencing factors[D]. Taian: Shandong Agricultural University, 2022. | 
																													
																							| [20] |  | 
																													
																							|  | Zhao H W, Mao J B, A N G, Luo X L, An T W. Study on carcass traits of Changtai yak[J]. Hubei Agricultural Sciences, 2016, 55(18):4763-4766. | 
																													
																							| [21] | Zhang C, Chen H , Zhang L , Zhao M , Guo Y , Zhang C , Lan X , Hu S . Association of polymorphisms of the GHRHR  gene with growth traits in cattle (Brief report)[J]. Archives Animal Breeding , 2008 , 51 (3):300-301.doi:10.5194/aab-51-300-2008 .  URL
 | 
																													
																							| [22] | Liu Y L, Lan X Y , Qu Y J , Li Z J , Chen Z Q , Lei C Z , Fang X T , Chen H . Effects of genetic variability of the dairy goat growth hormone releasing hormone receptor (GHRHR) gene on growth traits[J]. Molecular Biology Reports , 2011 , 38 (1):539-544.doi:10.1007/s11033-010-0138-7 .  pmid: 20354904
 | 
																													
																							| [23] | Komati H, Naro F , Mebarek S , De Arcangelis V , Adamo S , Lagarde M , Prigent A F , Némoz G . Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton[J]. Molecular Biology of the Cell , 2005 , 16 (3):1232-1244.doi:10.1091/mbc.e04-06-0459 .  pmid: 15616193
 | 
																													
																							| [24] | Yoon M S, Chen J . PLD regulates myoblast differentiation through the mTOR-IGF2 pathway[J]. Journal of Cell Science , 2008 , 121 (3):282-289.doi:10.1242/jcs.022566 .  URL
 | 
																													
																							| [25] | Teng S Z, Stegner D , Chen Q , Hongu T , Hasegawa H , Chen L , Kanaho Y , Nieswandt B , Frohman M A , Huang P . Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration[J]. Molecular Biology of the Cell , 2015 , 26 (3):506-517.doi:10.1091/mbc.E14-03-0802 .  pmid: 25428992
 | 
																													
																							| [26] | Widlund H R, Fisher D E . Microphthalamia-associated transcription factor:a critical regulator of pigment cell development and survival[J]. Oncogene , 2003 , 22 (20):3035-3041.doi:10.1038/sj.onc.1206443 .  pmid: 12789278
 | 
																													
																							| [27] | Ooishi R, Shirai M , Funaba M , Murakami M . Microphthalmia-associated transcription factor is required for mature myotube formation[J]. Biochimica et Biophysica Acta (BBA) -General Subjects , 2012 , 1820 (2):76-83.doi:10.1016/j.bbagen.2011.11.005 .  pmid: 22138449
 | 
																													
																							| [28] | Feng Y R, Raza S H A , Liang C C , Wang X Y , Wang J F , Zhang W Z , Zan L S . CREB1 promotes proliferation and differentiation by mediating the transcription of CCNA2 and MYOG in bovine myoblasts[J]. International Journal of Biological Macromolecules , 2022 , 216 :32-41.doi:10.1016/j.ijbiomac.2022.06.177 .  URL
 | 
																													
																							| [29] |  | 
																													
																							|  | Lü X, Zhou D A. Research progress on the effect of PI3K/AKT signaling pathway on skeletal muscle regeneration[J]. Chinese Journal of Sports Medicine, 2020, 39(11):908-912. | 
																													
																							| [30] | Astratenkova I V, Rogozkin V A. Participation AMPK in the regulation of skeletal muscles metabolism[J]. Rossiiskii Fiziologicheskii Zhurnal Imeni I M Sechenova, 2013, 99(6):657-673. | 
																													
																							| [31] | Chen M, Ji C Y , Yang Q C , Gao S Y , Peng Y , Li Z , Gao X Y , Li Y T , Jiang N , Zhang Y B , Bian X H , Chen C P , Zhang K D , Sanchis D , Yan F R , Ye J M . AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle[J]. Clinical Science , 2020 , 134 (17):2381-2398.doi:10.1042/cs20191320 .  URL
 | 
																													
																							| [32] | Li H, Malhotra S , Kumar A . Nuclear factor-kappa B signaling in skeletal muscle atrophy[J]. Journal of Molecular Medicine , 2008 , 86 (10):1113-1126.doi:10.1007/s00109-008-0373-8 .  URL
 | 
																													
																							| [33] | Wang H T, Hertlein E , Bakkar N , Sun H , Acharyya S , Wang J X , Carathers M , Davuluri R , Guttridge D C . NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes[J]. Molecular and Cellular Biology , 2007 , 27 (12):4374-4387.doi:10.1128/MCB.02020-06 .  pmid: 17438126
 | 
																													
																							| [34] | O'Neill B T, Bhardwaj G , Penniman C M , Krumpoch M T , Suarez Beltran P A , Klaus K , Poro K , Li M Y , Pan H , Dreyfuss J M , Nair K S , Kahn C R . FoxO transcription factors are critical regulators of diabetes-related muscle atrophy[J]. Diabetes , 2019 , 68 (3): 556-570. doi:10.2337/db18-0416 .  pmid: 30523026
 | 
																													
																							| [35] | Berdeaux R, Stewart R . cAMP signaling in skeletal muscle adaptation:hypertrophy,metabolism,and regeneration[J]. American Journal of Physiology-Endocrinology and Metabolism , 2012 , 303 (1):E1-E17.doi:10.1152/ajpendo.00555.2011 .  URL
 | 
																													
																							| [36] | Hall J E, Kaczor J J , Hettinga B P , Isfort R J , Tarnopolsky M A . Effects of a CRF2R agonist and exercise on mdx  and wildtype skeletal muscle[J]. Muscle & Nerve , 2007 , 36 (3):336-341.doi:10.1002/mus.20820 . | 
																													
																							| [37] | Hinkle R T, Donnelly E , Cody D B , Samuelsson S , Lange J S , Bauer M B , Tarnopolsky M , Sheldon R J , Coste S C , Tobar E , Stenzel-Poore M P , Isfort R J . Activation of the CRF 2 receptor modulates skeletal muscle mass under physiological and pathological conditions[J]. American Journal of Physiology-Endocrinology and Metabolism , 2003 , 285 (4):E889-E898.doi:10.1152/ajpendo.00081.2003 .  URL
 | 
																													
																							| [38] | Minetti G C, Feige J N , Rosenstiel A , Bombard F , Meier V , Werner A , Bassilana F , Sailer A W , Kahle P , Lambert C , Glass D J , Fornaro M . Gαi2  signaling promotes skeletal muscle hypertrophy,myoblast differentiation,and muscle regeneration[J]. Science Signaling , 2011 , 4 (201):ra80.doi:10.1126/scisignal.2002038 . | 
																													
																							| [39] | Ryall J G, Lynch G S . The potential and the pitfalls of β-adrenoceptor agonists for the management of skeletal muscle wasting[J]. Pharmacology&Therapeutics , 2008 , 120 (3):219-232.doi:10.1016/j.pharmthera.2008.06.003 . | 
																													
																							| [40] | He H R, Yin H D , Yu X K , Zhang Y , Ma M G , Li D Y , Zhu Q . PDLIM5 affects chicken skeletal muscle satellite cell proliferation and differentiation via the p38-MAPK pathway[J]. Animals , 2021 , 11 (4):1016.doi:10.3390/ani11041016 .  URL
 | 
																													
																							| [41] | Ge J, Liu K , Niu W , Chen M , Wang M , Xue Y M , Gao C B , Ma P X , Lei B . Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo  skeletal muscle regeneration[J]. Biomaterials , 2018 , 175 :19-29.doi:10.1016/j.biomaterials.2018.05.027 .  URL
 |