[17] |
Yan Z Q, Jiang T T, Wang P F, Huang X Y, Yang Q L, Sun W Y, Gun S B. Circular RNA expression profile of spleen in a Clostridium perfringens type C-induced piglet model of necrotizing enteritis[J]. FEBS Open Bio, 2018, 8(10):1722-1732.doi: 10.1002/2211-5463.12512.
URL
|
[18] |
|
|
Huang X Y, Yang Q L, Yan Z Q, Wang P F, Shi H R, Gun S B. Characterization of circRNA expression profiles involved in intestines of Clostridium perfringens type C-infected diarrheal piglet[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11):4058-4070.
|
[19] |
Yan Z Q, Cai L J, Huang X Y, Sun W Y, Li S H, Wang P F, Yang Q L, Jiang T T, Gun S B. Histological and comparative transcriptome analyses provide insights into small intestine health in diarrheal piglets after infection with Clostridium perfringens type C[J]. Animals, 2019, 9(5):269.doi: 10.3390/ani9050269.
URL
|
[20] |
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2:accurate alignment of transcriptomes in the presence of insertions,deletions and gene fusions[J]. Genome Biology, 2013, 14(4):R36.doi: 10.1186/gb-2013-14-4-r36.
URL
|
[21] |
Guttman M, Garber M, Levin J Z, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol M J, Gnirke A, Nusbaum C, Rinn J L, Lander E S, Regev A. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs[J]. Nature Biotechnology, 2010, 28(5):503-510.doi: 10.1038/nbt.1633.
pmid: 20436462
|
[1] |
|
|
Zhong Q Z. Prevention and treatment of piglet diarrhea[J]. Guangxi Journal of Animal Husbandry & Veterinary Medicine, 2023, 39(2):77-78.
|
[2] |
|
|
Gu X C, Wang S. Discussion on the causes and prevention measures of diarrhea in weaned piglets[J]. Livestock and Poultry Industry, 2023, 34(2):70-72.
|
[3] |
|
|
Wang Q Q, Zou X Y, Xu C X, Lü C Z. Analyze the causes,categories and corresponding treatment methods of piglet diarrhea[J]. China Animal Health, 2022, 24(12):15-16.
|
[4] |
Uzal F A, Freedman J C, Shrestha A, Theoret J R, Garcia J, Awad M M, Adams V, Moore R J, Rood J I, McClane B A. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease[J]. Future Microbiology, 2014, 9(3):361-377.doi: 10.2217/fmb.13.168.
URL
|
[5] |
Grass J E, Gould L H, Mahon B E. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens,United States,1998-2010[J]. Foodborne Pathogens and Disease, 2013, 10(2):131-136.doi: 10.1089/fpd.2012.1316.
URL
|
[6] |
Uzal F A, Mcclane B A. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections[J]. Veterinary Microbiology, 2011, 153(1/2):37-43.doi: 10.1016/j.vetmic.2011.02.048.
|
[22] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3):562-578.doi: 10.1038/nprot.2012.016.
pmid: 22383036
|
[23] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515.doi: 10.1038/nbt.1621.
pmid: 20436464
|
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[25] |
|
|
Li F F, Zhang Y, Li Q, Zhao Z H, He X L, Xu L H. Progress on pathogenesis mechanism of Clostridium perfringens type C[J]. Progress in Veterinary Medicine, 2016, 37(12):82-85.
|
[26] |
Songer J G, Uzal F A. Clostridial enteric infections in pigs[J]. Journal of Veterinary Diagnostic Investigation, 2005, 17(6):528-536.doi: 10.1177/104063870501700602.
pmid: 16475510
|
[27] |
Collier C T, Hofacre C L, Payne A M, Anderson D B, Kaiser P, Mackie R I, Gaskins H R. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth[J]. Veterinary Immunology and Immunopathology, 2008, 122(1/2):104-115.doi: 10.1016/j.vetimm.2007.10.014.
|
[7] |
Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin:characterization and mode of action[J]. The Journal of Biochemistry, 2004, 136(5):569-574.doi: 10.1093/jb/mvh161.
URL
|
[8] |
Miclard J, Jäggi M, Sutter E, Wyder M, Grabscheid B, Posthaus H. Clostridium perfringens beta-toxin targets endothelial cells in necrotizing enteritis in piglets[J]. Veterinary Microbiology, 2009, 137(3/4):320-325.doi: 10.1016/j.vetmic.2009.01.025.
|
[9] |
Petit L, Gibert M, Popoff M R. Clostridium perfringens:Toxinotype and genotype[J]. Trends in Microbiology, 1999, 7(3):104-110.doi: 10.1016/s0966-842x(98)01430-9.
|
[10] |
Kiu R, Hall L J. An update on the human and animal enteric pathogen Clostridium perfringens[J]. Emerging Microbes & Infections, 2018, 7(1):141.doi: 10.1038/s41426-018-0144-8.
|
[11] |
Lawrence G, Cooke R. Experimental pigbel:The production and pathology of necrotizing enteritis due to Clostridium welchii type C in the Guinea-pig[J]. British Journal of Experimental Pathology, 1980, 61(3):261-271.
pmid: 6252934
|
[12] |
|
|
Huang G M, Zhang Y Y, Yan H G, Song Y Y, Yang Y L, Lao Y. Investigation and analysis of Clostridium perfringens infection in pig farms in three provinces[J]. Swine Production, 2014(1):103-104.
|
[13] |
|
|
Yan H G, Liu L M. Investigation on Clostridium perfringens infection in pig farms in four southern provinces[J]. Swine Production, 2015(6):121-122.
|
[28] |
Ranum A, Kurachek S C. Spleen and portal pneumatosis secondary to Clostridium perfringens septicemia[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 194(4):e4.doi: 10.1164/rccm.201512-2545im.
|
[29] |
Latz E, Xiao T S, Stutz A. Activation and regulation of the inflammasomes[J]. Nature Reviews Immunology, 2013, 13(6):397-411.doi: 10.1038/nri3452.
pmid: 23702978
|
[30] |
Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K. Essential involvement of interleukin-8 (IL-8) in acute inflammation[J]. Journal of Leukocyte Biology, 1994, 56(5):559-564.doi: 10.1002/jlb.56.5.559.
|
[31] |
Sun Y P, Jiang J W, Po T E, Liu W J, Li J. IFN-λ:A new spotlight in innate immunity against Influenza virus infection[J]. Protein & Cell, 2018, 9(10):832-837.doi: 10.1007/s13238-017-0503-6.
|
[32] |
Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, Libert C, Smets I, Goris A, Wouters C, Matthys P. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways[J]. European Journal of Immunology, 2018, 48(9):1506-1521.doi: 10.1002/eji.201847578.
pmid: 30004580
|
[33] |
Truong A D, Rengaraj D, Hong Y, Hoang C T, Hong Y H, Lillehoj H S. Differentially expressed JAK-STAT signaling pathway genes and target microRNAs in the spleen of necrotic enteritis-afflicted chicken lines[J]. Research in Veterinary Science, 2017, 115:235-243.doi: 10.1016/j.rvsc.2017.05.018.
pmid: 28525837
|
[34] |
Sarson A J, Wang Y, Kang Z M, Dowd S E, Lu Y, Yu H, Han Y M, Zhou H J, Gong J. Gene expression profiling within the spleen of Clostridium perfringens-challenged Broilers fed antibiotic-medicated and non-medicated diets[J]. BMC Genomics, 2009, 10(1):1-13.doi: 10.1186/1471-2164-10-260.
|
[35] |
Truong A D, Hong Y H, Lillehoj H S. RNA-seq profiles of immune related genes in the spleen of necrotic enteritis-afflicted chicken lines[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(10):1496-1511.doi: 10.5713/ajas.15.0143.
pmid: 26323406
|
[36] |
Wang P F, Huang X Y, Yan Z Q, Yang Q L, Sun W Y, Gao X L, Luo R R, Gun S B. Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C[J]. Microbial Pathogenesis, 2019, 136:103699.doi: 10.1016/j.micpath.2019.103699.
URL
|
[37] |
Aalaei-andabili S H, Rezaei N. Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) and immune response against infection:A systematic review[J]. Journal of Infection, 2013, 67(4):251-264.doi: 10.1016/j.jinf.2013.07.016.
|
[38] |
Zhang E J, Lu M J. Toll-like receptor (TLR)-mediated innate immune responses in the control of Hepatitis B virus (HBV) infection[J]. Medical Microbiology and Immunology, 2015, 204(1):11-20.doi: 10.1007/s00430-014-0370-1.
URL
|
[39] |
O'Shea J J, Husa M, Li D, Hofmann S R, Watford W, Roberts J L, Buckley R H, Changelian P, Candotti F. Jak3 and the pathogenesis of severe combined immunodeficiency[J]. Molecular Immunology, 2004, 41(6/7):727-737.doi: 10.1016/j.molimm.2004.04.014.
|
[40] |
Pesu M, Candotti F, Husa M, Hofmann S R, Notarangelo L D, O'Shea J J. Jak3,severe combined immunodeficiency,and a new class of immunosuppressive drugs[J]. Immunological Reviews, 2005, 203(1):127-142.doi: 10.1111/j.0105-2896.2005.00220.x.
|
[41] |
Krywejko J, Morgiel E, Wiland P. Jak3-its significance in inflammatory diseases of joints-new perspectives for therapy[J]. Advances in Clinical and Experimental Medicine, 2008, 17 (4):479-484.
|
[42] |
|
[14] |
Hu Y, Shan Y J, Zhu C H, Song W T, Xu W J, Zhu W Q, Zhang S J, Li H F. Upregulation of NRAMP1 mRNA confirms its role in enhanced host immunity in post-artificial infections of Salmonella enteritidis in chicks[J]. British Poultry Science, 2015, 56(4):408-415.doi: 10.1080/00071668.2015.1052371.
pmid: 26181686
|
[15] |
Wang J, Pan Z Y, Zheng X R, Wu Z C, Su X M, Zhu G Q, Huang X G, Wu S L, Bao W B. TLR4 gene expression in pig populations and its association with resistance to Escherichia coli F18[J]. Genetics and Molecular Research, 2013, 12(3):2625-2632.doi: 10.4238/2013.july.30.1.
pmid: 23979888
|
[16] |
Burkey T E, Skjolaas K A, Dritz S S, Minton J E. Expression of Toll-like receptors,interleukin 8,macrophage migration inhibitory factor,and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis[J]. Veterinary Immunology and Immunopathology, 2007, 115(3/4):309-319.doi: 10.1016/j.vetimm.2006.11.012.
|
[43] |
Hui Z Y, Zhou L N, Xue Z H, Zhou L F, Luo Y K, Lin F, Liu X, Hong S H, Li W, Wang D, Lu L R, Wang J L, Wang L. Cxxc finger protein 1 positively regulates GM-CSF-derived macrophage phagocytosis through CsF2α-mediated signaling[J]. Frontiers in Immunology, 2018, 9:1885.doi: 10.3389/fimmu.2018.01885.
URL
|
[44] |
Bremer H D, Landegren N, Sjöberg R, Hallgren Å, Renneker S, Lattwein E, Leonard D, Eloranta M L, Rönnblom L, Nordmark G, Nilsson P, Andersson G, Lilliehöök I, Lindblad-Toh K, Kämpe O, Hansson-Hamlin H. ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease[J]. Scientific Reports, 2018, 8:4852.doi: 10.1038/s41598-018-23034-w.
pmid: 29556082
|